BDS 20th March 2017

GENALE DAWA (GD3) MULTI-PURPOSE HYDROPOWER PROJECT ETHIOPIA

Part 1:

Ethiopia

- Hydropower In Ethiopia Part 2:
- Genale Dawa (GD3) Scheme Part 3:
- Part 4: **Dam Design & Construction**
- Part 5: **Appurtenant Structures**
- Part 6: Summary
- Part 7: Discussion

EAST AFRICA

THE HORN OF AFRICA

TOPOGRAPHY

HYDROLOGY

Annual Rainfall

GEOLOGY

THE GREAT RIFT VALLEY

Negele Borena NOC S/S Somalia

Lake Turkana

Chalbi Desert

Mogadishu

 Kenya

 Data SIO, NOAA, U.S. Navy, NGA, GEBCC

 Kiambu

 Image Landsat

 0 2016 ORION-ME

ARCHEOLOGY

THE BIRTHPLACE OF HUMANITY ?

HISTORICAL SITES - AXUM

ANCIENT STELLAE

ST MARY OF ZION CHURCH

ROCK HEWN CHURCHES-

THE BIRTH PLACE OF COFFEE

KAFFA (SOUTH ETHIOPIA)

ECONOMY

One of the fastest growing economies in the World

Annual GDP growth has averaged around 10% for the past 10 years

Africa's second most populous country. 50% under 18

MAIN ECONOMIC SECTORS

Agriculture Energy Construction Manufacturing Transport **Telecommunications** Tourism Minerals & Mining

Part 1: Ethiopia

- Part 2: Hydropower In Ethiopia
- Part 3: Genale Dawa (GD3) Scheme
- Part 4: Dam Design & Construction
- Part 5: Appurtenant Structures
- Part 6: Summary
- Part 7: Discussion

POWER DEVELOPMENT IN ETHIOPIA

Responsible Bodies

Government of the Federal Democratic Republic of Ethiopia (Growth and Transformation Plan)

Ministry of Water, Irrigation and Electricity

Ethiopian Electric Power

ETHIOPIAN ELECTRICTY DEMAND FORFCAST

Base High Low

REASONS FOR GROWTH IN ELECTRICTY DEMAND

- High rate of urban development
- High rate of industrial development
- Rural electrification (Universal Electricity Access Program)
- New railway developments
- New large scale irrigation projects
- Exportation of Electricity

EXPORTATION OF ELECTRICITY

Country	Capacity (MW)	Start Date	
Djibouti	100	since 2011	
Sudan	1200	since 2012	
Kenya	2000	2018/19	
Tanzania	400	2019/20	

Possible future connections to Burundi, Egypt, Libya, Rwanda, Uganda, Yemen and beyond through proposed regional interconnectors

EXPORTATION OF ELECTRICITY

East African Power Pool

(EAPP)

CORRELATION BETWEEN GDP AND HYDROPOWER DEVELOPMENT

12000	
10000	
8000	
6000	
4000	
2000	
0	1990 1990 1991 1992 1992 1992 1993 1994 1995 1996 1997 1996 1997 1998 1999 1999 1990 1990 1991 1992 1993 1994 1995 1996 1997 1998 1998 1999 1999 1990 <t< td=""></t<>

RENEWABLE ENERGY RESOURCES

Hydropower	45,000 MW
Wind	10,000 MW
Geothermal	5,000 MW
Solar	300 MW
Waste to Energy	500 MW
Cogeneration (Biofuel)	600 MW

Ethiopia's hydropower resources are second only to the Democratic Republic of Congo (DRC) throughout the whole of Africa

HYDROPOWER DEVELOPMENT SINCE 1990

Total Installed Capacity (MW)

HYDROPOWER DEVELOPMENTS SINCE 2000

Tis Abay II	nstalled	d Capacity (MW) Yea	ar 2002)
Gilgil Gibe I		184	2004	┝
Tekeze		300	2009)
Gilgil Gibe II		420	2009)
Tana Beles		460	2010)
Finchaa Amerti	Neshe	100	2012) -
Gilgil Gibe III		1870	2016)
Genale Dawa (GD3)	254	2018	3
GERD		6000	2018	3

HYDROLOGY

HYDROPOWER PROJECTS IN ETHIOPIA Tekeze

Double curvature concrete arch 188 m high 300 MW Completed 2010

HYDROPOWER PROJECTS IN ETHIOPIA Beles

Intake direct from Lake Tana 460 MW Completed 2010

HYDROPOWER PROJECTS IN ETHIOPIA Finchaa Amerti Neshe (FAN)

Earthfill 38m high 100 MW Completed 2012

HYDROPOWER PROJECTS IN ETHIOPIA Gilgel Gibe III

RCC 243 m high 1870 MW Completed 2016

HYDROPOWER PROJECTS IN ETHIOPIA Grand Ethiopian Renaissance Dam

RCC 175 m high 6450 MW Under construction (2018)

Part 1: Ethiopia

- Part 2: Hydropower In Ethiopia
- Part 3: Genale Dawa (GD3) Scheme
- Part 4: Dam Design & Construction
- Part 5: Appurtenant Structures
- Part 6: Summary
- Part 7: Discussion

GD3 PROJECT DETAILS

Gash-Barka Sana'a Hadhramaut Mountains Khartoum Asmara Gulf of Aden Danakil Desert Tana Lake Diibouti Djibouti Amhara **Ethiopian Highlands** Addis Abat Located on Genale River Ethiopia value 110 m high CFRD udan Reservoir capacity 2,570 Mm³ Reservoir area 98 km² / 8.4 Ha Negele luba🕿 254 MW Lake Turkana Man 1,600 GWh/year urkana Marsabit ert

> Data SI Waiir

Eastern

THE GENALE DAWA RIVER

THE GENALE HYDROPOWER CASCADE

SCHEME LAYOUT

ORGANISATIONAL STRUCTURE

FIDIC 'Silver Book' for EPC/Turnkey Projects

EPC = Engineer Procure Construct

36
TIMELINE

- 2007 Aug Feasibility Lahmeyer Consultants August 2007
- 2009 Sep Award to China Gezhouba Group Corporation (CGGC)
- 2011 Mar Basic Design / Start on Site
- 2013 Jan River Diverted
- 2013 Aug Commencement of TBM drive
- 2014 Oct Substantial completion of dam rockfill
- 2016 Oct Completion of TBM drive
- 2017 Mar Commence impounding
- 2017 Dec Commence electricity generation
- 2018 Mar Project completion

MAIN PROJECT FEATURES

110m HIGH CFRD DIVERSION TUNNEL

impoundment)

GATED SPILLWAY

MID LEVEL OUTLET

INTAKE STRUCTURE

HEADRACE TUNNEL TBM)

SURGE SHAFT

(plugged after start of

(three radial gates)

(radial gate & vert. wheel gate)

(trash rake & vertical wheel gate)

(12.4km long of which 9km by

(23 m diameter 120m high)

VERTICAL DROP SHAFT (188m high)

STEEL LINED PENSTOCK (various diameters)

U'GROUND P'HOUSE (three 84.7MW Francis Turbines)

TRANSFORMER CAVERN (immediately d/s of p'house cavern)

TAILRACE TUNNEL(820m long)

TAILRACE CHANNEL(480m long)

PROJECT IN PROFILE

39

UNDERGROUND WORKS

POWER INTAKE

TUNNEL BORING MACHINE

SURGE SHAFT

120m HIGH 23 m DIAMETER SLIP-FORMED CONCRETE

43

POWER HOUSE

TAILRACE CHANNEL

Genale Dawa (GD3)

Part 1: Ethiopia

- Part 2: Hydropower In Ethiopia
- Part 3: Genale Dawa (GD3) Scheme
- Part 4: Dam Design & Construction
- Part 5: Appurtenant Structures
- Part 6: Summary

DAM DESIGN

Feasibility Study¹ Recommended Roller Compacted Concrete (RCC)

Contractor changed to Concrete Faced Rockfill Dam (CFRD)

¹ Lahmeyer International, August 2007

DESIGN – DAM SITE LAYOUT

RESERVOIR / DAM DETAILS

Reservoir Catchment area: **Reservoir area:** Mean Inflow: Storage (Live / Dead): Loss of live storage after 50 years: Lifetime:

Dam

Type: **Geology / Rockfill material: Height:** Length: Fill volume:

10,445 km² **98 km²** 92.6 m³/s 2,570 / 2,310 Mm³ 2.1% > 1000 years

CFRD Granite 110 m 450 m 3 Mm³

TYPICAL CFRD SECTION

EVOLUTION OF CFRD's

Mid to late 1800s	Dumped rockfill with timber facing / steep slopes	
1890's	First use of concrete in 1890s (height < 25 m)	
1920s-1960s	Dumped in high lifts and sluiced. Use of upstream rockfill zone. Dam heights 80m - 100m. Result in face slab cracking / high leakage. CFRD's go out of fashion	
From late 60s	Rockfill placed in 1 - 2 metre lifts, watered and compacted. Reduction in particle size and improvements to plinth and face slab design = Improved performance. CFRDs popular again.	
2010	Standard design formalised in ICOLD Bulletin 141.	

Summarised from p.590 of Geotechnical Engineering of Dams, 2005, Taylor and Francis Group PLC

CONSTRUCTION – EARLY DAYS

DESIGN – DIVERSION

Diversion system sized for 1 in 10 year flood event (551 m³/s)

Low consequence of overtopping of cofferdams

500 m long drill and blast tunnel

20 m long concrete plug to be installed upon completion

DIVERSION WORKS (JAN 2013)

PLINTH - DESIGN

Upstream

PLAN

55

PLINTH – DESIGN

56

PLINTH

PLINTH FOUNDATION PREPARATION

CURTAIN GROUTING

X5'~X4段趾板固结灌浆布置图

Layout of toe slab foundation consolidation grouting from X5' to X4

BATHE SCALE BU

CURTAIN GROUTING

EMBANKMENT STABILITY

2D and 3D Dynamic Finite Element Analysis. Scenarios:

- 1. Completion dam constructed to crest
- 2. Normal water level
- 3. Highest flood water level
- 4. Lowest water level
- 5. Normal water level with earthquake

Fig. 4.4.2 The vertical displacement nephogram of the typical section at the time of completion (unit: cm)

EMBANKMENT DESIGN – SEISMIC Cocated in an area of low seismic hazard (Hazard

Class I).

Peak ground accelerations:

Maximum design earthquake

(MDE): 0.12 g

Operating basis earthquake

(OBE): 0.06 g

62

DESIGN – DAM SECTION

DESIGN – DAM SECTION

MATERIALS

2A	Filter	< 40 mm	
2B 80 mm	Cushion	<	
3 A	Transition	< 300 mm	
3B	General	< 600 mm	
3C	General	< 700 mm	
2A	Processed and blended		
2B	Processed and blended		
3 A	Quarry direct / tunnelling		
3B	Quarry direct		
3C	Quarry direct		

MATERIALS

QUARRY

CRUSHING, SCREENING AND BATCHING

PROCESSED MATERIALS

MWH. port of

Stantec

GENERAL ROCKFILL - CONSTRUCTION

- Abutment cleaning
- Control Layer thickness
- Control Segregation
- Test (prove density & grading)

ROCKFILL – EXTRUDED KERB

2A FILTER / 2B CUSHION FILL

DENSITY ASTM D5030 / GRADING

AND REPEAT . . .

3B/3C GENERAL ROCKFILL

3B/3C GENERAL ROCKFILL

DOWNSTREAM SLOPE

OCTOBER 2013

QUALITY CONCERNS . . .

QUARRY OPERATIONS

Secondary Blasting ?

A WAY FORWARD . . .

3B GENERAL ROCK FILL REVISED GRADING ENVELOPE - JANUARY 2014

🌐 MWH. 🔤 🚺 Stantec

IMPROVED SUPERVISION

ROCKFILL PROGRESS

83

Stantec

DIVERSION WORKS OCTOBER 2014

TOKWE-MUKOSI DAM – FEB 2014

Tokwe-Mukosi dam wall breached (Pictures: David Coltart Facebook)

INSTRUMENTATION

- Piezometers in dam foundation
- Settlement Meters
- Horizontal Displacement Meters
- Abutment Strain Gauges
- Observation holes in abutments (seepage)
- Surface Monitoring Network
- Seepage flow measurement weir at D/S toe
- Res Water level and water temperature
- Weather station
- Seismic (right bank, crest, mid-berm and D/S)

88

ROCKFILL SETTLEMENT

Settlement Data A2'-A2' El. 1070.0 m

FACE SLAB – DESIGN

8 m wide and 16 m wide panels

300 mm – 600 mm thick

2 layers of reinforcement

PERIMETER JOINT

Upstream Blanket Neoprene chord Face Slab Copper Rear-Guard Waterstop Spray applied Sandlaspinalt Upstream plastic water-stop Joint filler Asphalt Mortar Rockfill Spray emulsified "These things always leak at the perimeter joint . . . It doesn't **Plinth** matter what you do . . ." Anon MWH. port of Stantec

FACE SLAB PREPARATION

DAM DEFORMATION

FACE SLAB PREPARATION Mortar Cushions

FACE SLAB JOINTS

FACE SLAB INSTRUMENTATION

FACE SLAB

CREST WALL CONSTRUCTION

TOP WATER-STOP

UPSTREAM BLANKET

Part 1: Ethiopia

- Part 2: Hydropower In Ethiopia
- Part 3: Genale Dawa (GD3) Scheme
- Part 4: Dam Design & Construction
- Part 5: Appurtenant Structures
- Part 6: Summary

SPILLWAY DESIGN

SPILLWAY EXCAVATION

GATE SECTION CONSTRUCTION

CHUTE CONSTRUCTION

AERATION TOWERS

FLIP-BUCKET CONSTRUCTION

SPILLWAY CONSTRUCTION

SPILLWAY CONSTRUCTION

RELEASE TUNNEL DESIGN

RELEASE TUNNEL DESIGN

SPILLWAY / RELEASE TUNNEL COMBINED

RIVER BED 'PLUNGE' MODEL

RELEASE TUNNEL INLET

RELEASE TUNNEL GATE SHAFT

RELEASE TUNNEL GATE

Genale Dawa (GD3)

Part 1: Ethiopia

- Part 2: Hydropower In Ethiopia
- Part 3: Genale Dawa (GD3) Scheme
- Part 4: Dam Design & Construction
- Part 5: Appurtenant Structures
- Part 6: Summary

QUALITY CONTROL

GD-3 PROJECT SITE LABORATORY

Test Record of Compressive Strength of Concrete

Make Specimens Method: ASTM C31 Test Method: ASTM C39				Lab No.: ZC04 Design Strength: 21MPa						
										Item
3Days				7Days			28Days			
Cylinder No.	1	1	1	1	1	1	ZC04-2	ZC04-2	ZC04-	
Date of Casting	1				1			2013.03.02		
Date of Testing	1				1			2013.03.30		
Dimension of cube (cm)	1				1			15		
Area (cm ²)	1				1			225		
Volume of Cylinder (cm ³)	1				1			3375		
Weight of Cylinder (kg)	1	1	1	1	1	1	8.107	8.183	8.162	
Density of Concrete (kg/m ³)	1	1	1	1	1	1	2402	2425	2418	
Failure Load (KN)	1	1	1	1	1	1	753.25	718.33	721.8	
Compressive Strength (Mpa)	1	1	1	1	1	1	33.5	31.9	32.1	
Average Compressive strength (Mpa)	1				1			32.5		
Correct factor	0.8				0.8			0.8		
Axial Compressive strength (Mpa)	1				1			26.0		
Remarks										

QUALITY ASSURANCE

Non-Conformance Report Progress Chart

CHALLENGES . . .

COMPLETION (FROM UPSTREAM)

COMPLETION (DOWNSTREAM)

IMPOUNDING . . .

LIFE ON THE CAMP . . .

· 6.2

THE CAMP . . .

THE BEAUTIFUL GAME . . .

DINNER PARTIES . . .

EASTER FUN RUN . . .

Re.P

HOPE SCHOOL

QUESTIONS ? ?

