APPENDIX E: EXAMPLE OF RAPID IMPACT ANALYSIS

APPENDIX E : EXAMPLE OF RAPID IMPACT ASSESSMENT

RAPID IMPACT ASSESSMENT for reservoirs owned by Xenon plc on Rivers Anduin, Aries and Kappa

Preface

- 1. This example Impact assessment, although based on a real cascade, has been edited in respect of key features of the cascade and downstream valley to preserve the anonymity of the dam, including names.
- 2. This example plan is completed in respect of the impact assessment for the River Anduin, but excludes the detailed results for Rivers Aries and Kappa, in the interests of brevity.
- 3. For the reservoirs covered by this plan a rapid method would not normally be appropriate, as it should be evident by inspection that the dams are high consequence such that a standard impact assessment is warranted. Nevertheless this rapid assessment has been carried out on the same set of dams to
 - contrast the accuracy and content of the two methods
 - provide an example of a raid analysis that may be appropriate for low consequence dams

Rev	Date	Details of nature of change	By	Ckd	Appr	oved	Accepted
					Owner	Panel	by EA
						AR^{1}	
A01.01	17/06/2005	Issued to Environment	FJBS	AJB	EHG	JDG	Na
		Agency for examination and					
		acceptance					
A01.02	15/08/2005	Accepted by Environment	-	-	-	-	ABC
		Agency					
A02.01	2/3/20012	Add new housing estate to	RTS	SEG	EHG	JDG	GTF
		consequence tables					

Change log for plan

Notes

1. Documented in signed off separate statement by Qualified Civil Engineer

Contents

Figures

Figure 1.1 : Schematic of reservoirs and dams in cascade		2
--	--	---

1 OBJECTIVES, SCOPE AND ADMINISTRATION OF THE IMPACT ASSESSMENT

1.1 Objectives

This plan forms part of the risk management of the reservoirs listed in Table 1, comprising an assessment of the potential consequences in the event of dam failure. It also satisfies the requirements for Element I of a Flood Plan under Section 12A of the Reservoirs Act 1975 (added through Section 77 of the Water Act 2003).

1.2 Scope

This assessment covers some of the reservoirs and dams in the lower cascade above the Rivers Anduin, Aries and Kappa as listed in Tables 1 and 2 and shown on Figure 1.1.

There is an upper cascade comprising one reservoir upstream of Beta reservoir, but separated by a community (the village of Bree).

The analysis has been carried out by JACOBS, Leatherhead under contract to Xenon plc.

Table 1 : Reservoirs and dams covered by this Impact assessment (owned by Xenon plc)

Reservoir			Dams			Reservoir or watercourse			
Name	Capacity	No.	Name	Grid Ref	Consq.	that would receive breach			
					Class				
	(m^3)								
Beta	3,500,000	1	Beta South	Xxxxx xxxx	A1	Gamma Reservoir			
Gamma	4,200,000	3	Gamma East	Xxxxx xxxx	A1	Delta Reservoir			
			Gamma South	Xxxxx xxxx	A1	River Anduin			
			Gamma West	Xxxxx xxxx	A1	Kappa Brook 5.5km to			
						confluence with Anduin.			
Delta	1,100,000	2	Delta South	Xxxxx xxxx	A1	River Anduin			
			Delta East	Xxxxx xxxx	A1	River Aries approx 38km			
						to confluence with Anduin			

Notes

1. Shown on Landranger (1:50,000 scale) Map No xxx and Explorer (1:25,000 scale) Map No xxx

Tuble 2 . Reset tons and aunis applicant of reset ton 5 not covered by this impact assessmen	Table	2:	Reservo	oirs and	dams	upstream	of	reservoir	's not	covered	by	this	Impact	assessmer
--	-------	----	---------	----------	------	----------	----	-----------	--------	---------	----	------	--------	-----------

Reservoir			Dams		Reservoir or watercourse that
Name	Capacity	No.	Name	Grid Ref	would receive breach
	(m^{3})				
Alpha	250,000	1	Alpha South	Xxxxx xxxx	Gamma Reservoir
Sigma	55,000	1	Sigma south	Xxxxx xxxx	River Anduin through Bree;
-			-		then Beta reservoir

1.3 Administration of the Impact assessment

The status of this document is as shown in the table on the cover and it is issued to those shown in Table 3. The electronic copy is password protected, with the password issued by the Reservoir Safety Manager.

Role	Name	Postal Address	Phone	Format
			(working	
			hours)	
Internal – Water Company				
Reservoir Safety Manager	XXXXX	XXXXX	XXXX	Electronic
Emergency Planning Officer	XXXXX	XXXXX	XXXX	notification of
Supervising Engineer (s)	XXXXX	XXXXX	XXXX	changes; Impact
Operations Manager	XXXXX	XXXXX	XXXX	assessment on
				company
				intranet
Enforcement Authority -En	vironme	nt Agency:		
a) Technical Manager-	XXXXX	Reservoir Safety - Technical		Hard +
Reservoir Safety		Manager, The Environment		Electronic
		Agency, Manley House,		
		Kestrel Way, Sowton Industrial		
		Estate, EXETER, EX2 7LQ		
b) Regional office	XXXXX	XXXXX	XXXX	Hard +
Operations Manager				Electronic
Category 1 Responders				
Local authority Emergency				Electronic
Planning Officer				
Environment Agency Area	XXXXX	XXXXX	XXXX	Hard copy
office. Operations Manager				
Other External				
Local Authority –	[Hard copy
Development Control				
Officer				

2 SCENARIOS MODELLED IN ANALYSIS

The Guide to Emergency Planning for UK Reservoirs defines a Standard Analysis Scenario based on the identification of a critical flow route and failure of all the dams on that route following a 10,000 year flood.

It has been concluded that the Standard Analysis Scenario is a reasonable representation of the dam breach flood for all three watercourses and no alternative scenarios will be presented. The key points in this assessment are set out in Table 4 (note that all dams being considered are impounding).

	Issue	Failure mode									
(He	ading in Standard	Rainy day, whole cascade, for watercourse		Sunny day, for w	y day, for watercourse						
Ana	alysis Scenario)	Anduin	Aries Kappa	Anduin	Aries Kappa						
1	Number of dams	All three significant dams on the critical flow route (e.g. Beta	Omitted for	Delta South only	Omitted for						
	involved	South/ Gamma East/ Delta South- see Table A.1)	brevity.		brevity						
2	Mode of failure	1:10000 year flood causing overtopping failure		Unexpected development of breach							
3	Timing of failure at individual dam	Rapid method considers cumulative volume of all reservoirs		Not relevant (rapid method)							
4	Initial reservoir level and reservoir volume (in all reservoirs)	Reservoir at top of crest wall		Reservoir at spillway crest							
5	Steady state flow in the watercourse (prior to the dam failure)	Neglect (rapid method)		Neglect (rapid method)							
6	Inflows into reservoir(s)	Neglect (rapid method)		Neglect (rapid method)							
7	Outflows from reservoir	All outlets closed		All outlets closed							
8	Inflow from tributaries downstream of reservoir	Neglect inflows downstream of Delta South: (1000 year flood at model downstream limit less than 10% of peak dambreak flood at Delta South)		Neglect (rapid method)							
9	Downstream boundary for impact assessment	Confluence with larger river and entry into broad coastal flood plain. Flood impact reduced to inundation only and flood depth typically less than 0.5m.		As rainy day							
10	Base Population at risk	It is considered that there would be insufficient time between the flood wave reaching the first community and subsequent communities for any warning to be issued		As rainy day							

Table 4 : Assumptions in	Impact assessment scenario	D
--------------------------	----------------------------	---

3 DAM BREAK DISCHARGES AND CRITICAL FLOW PATHS

All the dams are conventional embankment structures. Breach discharges were estimated using the methodology in the Engineering Guide, namely peak flow as Froehlich (1995) and time to peak as CIRIA 2000 and are given in Table 5.

The critical flow routes for the Standard Analysis Scenarios has been identified as shown in Attachment A. Other assessments in identifying the critical flow routes are

- a) Neglects failure of Alpha reservoir, as this has an insignificant volume compared to the other reservoirs on the critical flow route.
- b) Neglects failure of Sigma reservoir, as this is upstream of the reservoirs covered by this plan.
- c) Failure via Delta South gives a higher dam break flood than via Gamma South
- d) The peak flow appears likely to be dominated by flows from Beta reservoir for all possible flow routes, due to the much greater reservoir volume and dam height.

The peak breach discharge from the top dam (beta south) gives a much higher discharge than those of the lower downstream dams. The peak breach discharge hydrograph has therefore been obtained as shown on Sheet 8.3 i.e.

- Peak discharge as maximum discharge from any dam in cascade
- Volume total for all reservoirs in cascade

Reservoir					Dam				Rainy Breach discharge Q						Sunny da	ay breach	Flow route			
Name	Level of	At Spillwa	av crest	S	oillwav	Initial	Volume of	Name	Name Level of		Single (Note 2)			Cascade failure				te 4)		
	Spillway crest	Volume	Area	Туре	Minimum width of weir/ chute	water level	reservoir freeboard (lowest top of crest wall to		Dam crest	Top crest wall	Original ground level under dam crest	Height	Discharge	Breach sequence	Height for dam break when reservoir	Cumulative volume (Note 3)	Discharge	Height	Discharge	
							spillway)								overtopping					
	mOD	m3	m2		m				mOD	mOD	mOD	m	m³/s		m		m³/s	m	m³/s	
Alpha	161.96	250,000	30,000	Chute	5.5	Spillway crest	51,600	Alpha South	163.68	None	151.50	12.2	527	Not app				Not ap	plicable	
Beta	169.52	3,300,000	250,000	Chute	18.5	Spillway crest	485,000	Beta South	171.46	172.66	143.72	25.8	2,861	Not app				Not ap	plicable	
Gamma	142.38	4,000,000	740,000	Chute	21.2	Spillway crest	1,850,000	Gamma West	144.31	145.41	134.31	10.0	935	Beta South/ Gamma West	10.6	9,150,000	1,278	8.1	717	Critical for R Kappa
								Gamma South	144.31	145.31	135.31	9.0	820	Beta South/ Gamma South	9.6	9,150,000	1,130	7.1	608	Anduin (non-critical)
								Gamma East	143.78	144.88	134.03	9.8	906	Beta South/ Gamma East	10.9	9,150,000	1,321	Not ap	plicable	Delta
Delta	129.28	1,100,000	240,000	Chute	24.5	Spillway crest	760,800	Delta South	131.35	132.45	119.15	12.2	817	Beta South/ Gamma East/ Delta South	13.3	11,010,800	1,795	10.1	649	Critical for Anduin
								Delta East	131.35	132.45	120.35	11.0	719	Beta South/ Gamma East/ Delta East	12.1	11,010,800	1,597	8.9	555	Critical for R Aries
Notes		<u> </u>		<u> </u>														<u> </u>		
1. From i	nspection (a	and rapid damb	oreak) reser	voir volum	nes are suffic	ciently larg	e not to requir	e adjustment (redu	uction) of	Qp										
2. Reserv	oir level as	defined in Inde	x Scenario																	
3. Reserv	oir volume	at top of flood	wall for all r	eservoirs	below that a	at top of ca	iscade. This vo	olume represents	volumes of	f flood infl	ows into upper	dam and	side catch	ments						
4. For ca	scade sunn	y day scenario	o, only the b	oottom da	m is conside	ered														

Table 5 : Estimation of dam breach flows and identification of critical flow route

This document is part of the
following Inundation Analysis and
Consequence Assessment:WatercourseRiver AnduinReservoirs/DamsBeta South
Gamma East
Delta South

4 METHODOLOGY FOR HYDRAULIC ROUTING

4.1 Level of analysis, software and ground model

This plan is an example of a rapid analysis. The data and software used are shown in Table 6.

Issue	Methodology used in preparation of this Impact
	assessment
Software	Excel spreadsheet in Interim Guide QRA, with some
	amendments. In particular use of k of 2.5, as
	recommended in the CIRIA report, gives La of over
	1000km which is considered unrealistic. K has therefore
	been reduced to 0.25 to give attenuation length la of
	between 20 and 80km.
Ground elevation data	Ordnance Survey 1;25,000 scale map
	Sheet No XXX, Published 1998
Channel cross-sections	Scaled from OS map
Structures and	Neglected
infrastructure	
embankments	
Urban areas across flow	Only isolated buildings across the flow path; no dense
path	urban area

 Table 6 : Data and software

Manning's 'n' has been taken as 0.075

The channel capacity is relatively modest, and it is reasonable to neglect this in the analysis. Although there are flood defences at Rauros, these are neglected in the dam break analysis as being unlikely to contain the flood wave.

4.2 Downstream limit of modelling

4.3 River Anduin

The model was extended to the confluence with the Aries River, which is tidal at this point. Estimated peak flood flows in this area, which is about 25 km downstream of Delta South, are summarised as shown in Table 7. The dam break flows at the confluence are intermediate between the 100 and 1000 year fluvial floods. It not considered necessary to extend the model downstream, particularly in view of the channel being tidal below that point.

4.4 River Aries

Omitted for brevity

4.5 River Kappa

Omitted for brevity

Table 7 : Fluvial flood magnitudes (no dam failure) at points down downstream watercourses (used to define downstream boundary)

Watercourse	Point on watercourse	Flow (<i>w</i> (m ³ /s)	(m^{3}/s)	
		Fluvia	l^1	Dam	break	
		100	1000	Rainy	Sunny	
		year	year	day	dam	
Anduin	Upstream of confluence Anduin/ Aries	170	288	624	130	
	Downstream of confluence Anduin/	390	952	Not av	ailable	
	Aries					
Kappa	Terminate at same point as Anduin					
Aries	Omitted for brevity					

Notes

1. From Rapid method in floods and reservoir safety.

4.6 Transportation embankments across flow path

The assumptions made are given in Sheets 1.7 and 8.5 of the Excel workbook.

4.7 Flood Zone Definition

4.8 River Anduin

Nine Flood Zones have been identified as shown in Table 8 and Sheet 8.5 of the Excel workbook.

Flood	Name	Nature
Zone		
Zone 1	Dam to Motorway 1	Mainly rural valley
Zone 2	Motorway 1 to	Small area with some development but significant
	Railway 1	amount of infrastructure
Zone 3	Pelargir Centre	Urban area with industry and a canal
Zone 4	Brook at Pelargir	Tributary subject to flooding backing up from main
		river
Zone 5	D/S Pelargir to	Long, largely rural reach
	Railway 2	
Zone 6	Railway 2 to	Short reach bounded by infrastructure
	Motorway 2	-
Zone 7	Motorway 2 to u/s	Mostly rural. Downstream boundary at upstream
	Rauros	limit of Rauros and where flow starts to spill from left
		bank into Zone 9
Zone 8	Rauros Centre	Urban area
Zone 9	Rauros Moss	Rural, largely low-lying off-stream area

Table 8 : Definition of Flood zones on River Anduin

4.9 River Aries

Omitted for brevity

Table 9 : Definition of Flood zones on River Aries

4.10 River Kappa

Omitted for brevity

Table 10 : Definition of Flood zones on River Kappa

5 CONSEQUENCE ASSESSMENT

The basis and assumptions made in the analysis are shown in Table 11, with the build up of results are shown on the sheets with the impact assessment and the summary of results in Sheet 12.1 of the Excel workbook.

Issue	Residential	Non-residential
Property database	Address point	Address point.
		Plan areas measured manually from
		1;10,000 map
Subdivision of	None	Broadly Multicoloured manual 2
property type		digit – used for PAR only
Property valuation	See Table 17	
Level of property damage	Sub-totals in each zone, based on adjacent model section	Sub-totals in each zone, based on point depth at building, with velocity from adjacent model section
Occupant area / number / building	Take as 2.3 (Value for Great Britain in 2003, as given in "Table 3.1 : Trends in household size: 1971 to 2003" on www.statistics.gov.uk	Vary with property type
Occupancy factor	70%	Vary with property type
Other damages	As shown in Table 17	

Fable 11 : Assumptions	n consequence	assessment
-------------------------------	---------------	------------

All three watercourses pass through major villages and towns, as shown in Table 12.

Table 12 : Towns	s through whic	h watercourses pass
------------------	----------------	---------------------

Watercourse	Towns and villages which are likely to be affected by dam failure
Anduin	Pelargir, Rauros
Kappa	As Aries (joins Aries just upstream of Pelargir)
Aries	Omitted for brevity

6 RESULTS OF IMPACT ASSESSMENT

Table 13 summarised the location in which the results of the impact assessment are presented.

The Consequence Class for all dams covered by this assessment are Class A1.

7 IMPACT ON INFRASTRUCTURE

7.1 Infrastructure at risk (in way of dam-break flood)

There are the following items of infrastructure crossing the floodplain in the lengths to the point at which the dam break flood is within the fluvial 100 year envelope. No assessment has been made of the risk of being severed as a result of dam failure. Broad brush hydraulic parameters are given in Appendices B to D.

Туре		Number on River			
		Anduin	Aries	Kappa	
	Length of dam break	25km			
Roads	Motorways	2			
	A roads	2			
Railways		2			
Canal		1			

7.2 Hydraulic Mitigation

The impact of the imminent failure of a dam in the upper part of a cascade could be mitigated by lowering reservoirs further down the cascade.

There are no obvious opportunities to use transport infrastructure to mitigate the flood wave.

8 MAINTENANCE OF THE IMPACT ASSESSMENT

This Impact assessment should be reviewed (and updated or modified as appropriate) no later than the next Inspection of the most upstream reservoir, due in 2012.

In addition it should be reviewed (and updated or modified as appropriate) in the event of any major development in the potential inundation area

Technical Specification		Results for watercourse and failure mode					
Clause	Content	Anduin		Aries		Kappa	
		Rainy day	Sunny	Rainy	Sunny	Rainy	Sunny
ʻa'	Standard Analysis	Yes, T	able 4			· ·	· · · ·
	Other scenarios	Sunny day for b	ottom dam only				
ʻb'	Peak breach outflows for different failure	Tab	le 8				
	scenarios and flow paths						
'c'	Zone details	Tab	le 7				
ʻd'	Transportation embankments obstructing the flow	Sheet 1.7 in	n workbook				
	path						
	Photographs at key points	Appen	idix A				
'e'	Tabulated output by zone						
	Hydraulic	Sheet 8.5 in workbook					
	Population at risk, Likely loss of life,	Sheet 9,10 in workbook					
	property damage						
ʻf'	Figures summarising	Sheet 12.1 in workbook					
	Flow hydrographs at zone boundaries	Not required fo	r rapid method				
	Peak flow down valley	Sheet 8.5 in	n workbook	All omitted for brevity			
	Longitudinal section down valley	Sheet 8.5 in workbook					
ʻg'	Total PAR, LLOL and third party damage	(build-up in 'e')					
	Population at risk	1673 651					
	Likely loss of life	363 27					
	Third party damage £M	l 104 47					
	Consequence Class	s A1					
ʻh'	Tabulated data at selected Key points	Not required for rapid method					
ʻi'	Map information	Not required for rapid method					

11

ATTACHMENT A: PHOTOGRAPHS OF KEY POINTS CONTROLLING FLOW DOWN VALLEY

A.1 River Anduin

Motorway at CH xxx, from downstream (note car parked in left hand corner)

Railway at Ch 3600, from downstream

Bridge under Canal, from upstream

AX bridge, from downstream

- A.2 River Aries
- A.3 River kappa

ATTACHMENT B : RELEVANT EXTRACTS OF ENVIRONMENT AGENCY ZONE 2 AND 3 MAPS (FROM INTERNET)

Omitted to maintain anonymity of the reservoir

ATTACHMENT C : RAPID METHOD WORKBOOK FOR RIVER ANDUIN

INTERIM GUIDE TO QRA : DOCUMENT CONTROL RECORD Sheet 0.0: Dates and individuals carrying out assessment

1. Base Workbook

Revision	Date	Reason for issue	Originator	Chkd	Appd
A01	01-Apr-02	Issue for use in trial of prototype Integrated System	AJB	JDG	AJB
R02	30-Apr-03	Draft of preliminary Engineering Guide, for internal review. Changes from A01 include a) Reduce external core threats to floods and cascade b) Improve scoring system for internal threats c) Dam break change from RMUKR to Froehlich d) LLOL change from DeKay & McClelland to BOR e) Physical damage change from RMUKR to quantitative system f) Add ALARP calculation sheet (from table in main report)	AJB/AM		
A02	30-Jul-03	Issue for client review	AJB	JDG	AJB
A03	20-Feb-04	Finalise after review by client and steering group	AJB	JDG	AJB

The authors of this report are employed by KBR (Kellogg Brown & Root Limited). The work reported herein was carried out under a Contract placed on 6th September 2002 by the Secretary of State for Environment, Food and Rural Affairs. Any views expressed are not necessarily those of the Secretary of State for Environment. Food and Rural Affairs.

© Copyright 2002.

Disclaimer

Neither the authors, Kellogg Brown & Root Limited, publishers or Defra shall be liable (whether in contract, tort (including negligence) or breach of statutory duty or otherwise) for any loss or damage suffered arising out of or in connection with any use of or reliance upon the contents of this Excel workbook and accompanying *Guide* including direct loss, business interruption, loss of production, profits, contracts, goodwill or anticipated savings, loss arising from third party claims or any indirect or consequential loss (whether or not foreseeable). However, nothing in this disclaimer shall exclude or limit liability for death or personal injury resulting from the proven negligence of any person mentioned above or for fraud or any other liability which may not be limited or excluded by law.

The terms "he" and "her" are used for simplicity to denote either male or female, as appropriate.

2. Changes to workbook by user of System

Provide details

1101100 00	tallo				
Revision	Date	Reason for issue	Originator	Chkd	Appd
1	30/03/2006	Refine Consequence assessment: Merge sheets 9 and 10 so they use common property database: move Sheet	AJB		
2	30/03/2006	1.6 to be at start of Sheets 9, 10, to summarise data on property at risk; Refine Inundation mapping: add sheet 1.7 with details of	AJB		
		transportation embankments across flood plain; In Sheet 8.5 add rows 20 to 31; 44-53; 65-73, long section down river			

3. Application of workbook

		Date completed
Lead user	AJB	08-Mar-06
Data input checked by		
Output reviewed by	JDG	
Approved by	AJB	
(Inspecting Engineer)		

Remarks e.g. if different Sections completed by different engineers

	Α	В	С	D
1	SITE INSPECTION			
2	Sheet 1.1: Characteristics of	Subj	ect Reservoir	
3	Dam name	Casca	ade above Anduin (Be	eta South to Delta South)
4	Grid ref.			
5	Calculation Number/ description	Rapid	dambreak for dams i	n cascade on River Anduin
6				
7	Information	l Inite	Column to be co	ompleted as far as possible
8		011113		Remarks
-	Crest wall : Is there one and if so can it		Wall can withstand	Kemana
	withstand sustained overtopping with		overtopping	
	reservoir stillwater at or above top of crest		ovortopping	
9	wall? (choose from pick list)			
13	Level of -		<u> </u>	
14	Top of crost wall (Noto 2)	mOD	172.66	
14	Lowest point on dom creat (Note 2)	mOD	172.00	
10	Lowest point on dam crest (Note 3)		17 1.40	
10	Original ground lovel on dom axis (Note 4)	mOD	142.72	
10	Downstroom stroom bod		143.72	
10	Downstream stream bed	mod	143	
20				
20	Hoight of dam crost above OGL on axis	m		
21	Height of dam crest above OGL off axis	m	27.74	1
22	Freeboard to dam crest	m	1 0/	
24	Height of wave wall above crest		1.34	
25			<u> </u>	1
26				
27	Reservoir capacity - at spillway crest level	m ³	3,300,000	
28	Reservoir area - at spillway crest level	m ²	250,000	
	- at top of intact crest wall/ Dam crest	m ²	300,000	
	level if no crest wall, or wall cannot		,	
29	withstand overtopping			
	Reservoir capacity at top of intact crest wall/	m ³	4,163,500	
1	Dam crest level if no crest wall, or wall			
30	cannot withstand overtopping			
31	Catchment area	km ²		
32	Downstream slope (overall)	H:V		
33	Upstream slope (overall)	H:V		
34	Notes			
35	1. The contents of shaded cells are used in s	ubsequ	ient analysis and mus	st be included
36	2. Insert "None" if no wall			
37	3. Input lowest (used in estimate of overtoppi	ng flow	')	
38	4. Used to derive the dam height used in calc	culating	the dam break flood	
39				
1	Caution : Data input is also required in ot	her sh	eets. It is therefore	recommended that in order to
1	identify the data to be obtained from site	inspec	tion and measureme	ent all sheets in this workbook
40	are reviewed, and where p	ossibl	e completed, prior t	o the site visit.

	А	В	С
1	SITE INSPECTION		·
2	Sheet 1.2: Background [Data (c	lesk studv)
3	NB Completing sheet is optional	- see te	xt
4	Dam name	Cascade	above Anduin (Beta South to Delta South)
5	Grid ref.	0	
6	Calculation Number/ description	Rapid da	mbreak for dams in cascade on River Anduin
7			
8	1. Location and general informatior	า	
9	Name of Reservoir		
10	50,000 topographic sheet No.		
11	25,000 topographic sheet No.		
12	50,000 geological sheet No. and Nam	e	These are three recencies, each retained by accord
12	this recent cir?		I here are three reservoirs, each retained by several
1/	Inis reservoir :		
14	Date of first impounding/ Is reservoi	r still in	In-service
15	"Wear-in period", or "In-service	e"	
16		•	
17	2. Last safety assessment of dam (aive date	, reason e.g. periodic, following incident)
18		Date	Details
	Inspection under Section 10 of		
19	Reservoirs Act, 1975		
	Hydrological analysis (date,		
20	methods)		
21	Seismic analysis (date, method)		
22			
23	3. Any other reports relevant to res	ervoir sa	fety/ integration of different threats to the dam?
24	Report Title	<u>Date</u>	Remarks re effect on dam safety
25			
26			
21			1
28			
29	4. Information on original design	<u>Date</u>	Author; content e.g. length
30	Design Report		
	Description of works with Certificate		
	of efficient execution, or with periodic		
31	Inspection		
32			
33	Drawing Title	<u>Date</u>	Author, other remarks
35			
36			
37			
38			
39			

	A	В	С
40	5. Any major upgrades since origin	al constr	uction (give date and description)
41	Embankment		
42	Outlet		
43	Spillway		
44			
45	6. General description of embankm	ent	
46	Impervious element - type		
47	Upstream shoulder - material		
48	Downstream shoulder - material		
49	Foundation cut-off		
50	Foundation geology		
51	Crest width	m	
52	Crest length	m	
53	Core - top elevation	m	
	 width at top elevation, original 	m	
54	ground level		
55			
56	7. General description of appurtena	nt works	
	Outlets: type(s)/ location(s) e.g.	No 1	
	pipe in fill, pipe in tunnel, pipe in		
57	culvert through fill		
58		No 2	
59	Spillway : type/ location	No 1	
60		No 2	
61			
	8. Concrete gravity or service reser	voirs - de	esk study information relevant to consequence
62	assessment		
63			
64			
65			
66			
67			

	Α	В	С	D
1	SITE INSPECTION		•	
1	Shoot 1 5: Downstroom P	000r	voire	
2		Cocco	VOIIS	(outb)
3	Crid rof	Casca	de above Anduin (Bela South to Della S	outri)
4	Gliu lei. Coloulation Number/ description	U Donid	dambrook for damo in oppoado on Pivor	Anduin
5		каріц	dambreak for dams in cascade on River	Anduin
0	Downstroom rosorvoirs (in order	Linite	Dam No D1	Dam No D2
7	from subject dam)	011113	Dannobi	Damino D2
-	Namo		Commo oost	Dolta south
8			Gamma east	
9	OS Grid Reference			
10	Distance from subject dam	кт		
11	Date Built			
10	Has QRA been applied to this dam?			
12	Give date, reason, Panel Engineer			
13	Levels and dimensions			
14	Basis of levels			
	Will crest wall withstand sustained		Wall can withstand overtopping	Wall can withstand overtopping
	overtopping with reservoir stillwater at			
	or above top of crest wall? (choose			
4 -	from pick list; expand in Other remarks			
15	at bottom)		111.00	122.45
19	Top of crest wall (Note 1)	mOD	144.88	132.45
20	Maximum retention level	mOD	142.38	129.28
21	Dominal ground level on dam axis	mod	134	119.15
22	Erochoard	 	10.00	13.3
23	Creet width: curfacing		2:5	5.17
24	Crest longth	m		
20	Diest length Beconvoir volume at apillwov groat	3	4 000 000	1 100 000
27	Surface area of reservoir - at spillway	m' m ²	740.000	240,000
28	- at top of crest wall (Note 1)	01 m ²	740,000	240,000
	Reservoir volume at top of crest wall	m ³	5,850,000	1,860,800
29	(Note 1)			
30	Description of elements of dam			
31	Embankment			
32	Spillway capacity			
33	Outlet(s)			
34	Other			
35	Qualitative Risk assessment		<u></u>	
36	Condition - give description			
	Summary of risk of failure if subject			
37	dam breached			
	Conclusion as to what account should			
38	be taken in risk assessment			
39				
	Any other remarks about potential			
	consequential failures, caused by			
40	failure of subject dam			
41				
42	Notes			
43	1. Embankment crest level if no crest w	vall; or	if crest wall cannot withstand overtoppin	g

SITE INSPECTION

Sheet 1.7: Transportation embankments which could obstruct flow path

Dam name Grid ref. Cascade above Anduin (Beta South to Delta South)

Calculation Number/ description

Rapid dambreak for dams in cascade on River Anduin

	Point definition			Embankment				Struc	ture thr	ough em	bankment		All structures and embankments intact	
			1										% blo	ckage
Flood Zone Referenc e	Name of Transportation embankment	Floodplain Elevation	Crest Level	Max height	Crest width (along flow route)	Crest length which could be overtopped	Notes re vulnerabilit y to breach	Туре	Bottom Width	Height of crown above flood plain	Open area above flood plain (unrestricted)	Source of data	% blockage in dam break event	Effective open area above flood plain
		mAOD, to one decimal place	mAOD	m		m		mAOD	m	m	m²		%	m²
Zone 1	Mxx motorway bridge SE Pelargir. C road on right bank	108.5	116.0	7.5	30		Low	Vertical RC side walls	20	15.0	300	Site visit	0	300
Zone 2	Railway 1 - bridge SE Pelargir	86.8	93.2	6.4	6		High	Masonry arch bridge	5	9	40	Site visit	50%	20
Zone 3	Canal bridge over river SW of Railway 1	87.4	91	3.6	10		Medium	Masonry arch bridge	6	3	15	Site visit	80%	3
Zone 3	Ax road bridge at Pelargir	75.3	80	4.7	12		Medium	Masonry arch bridge	9	5	40	Site visit	50%	20
Zone 5	Railway 2 - dual bridges near Euxton	28.1	45.5	17.4	6		High	RC Culvert	10	4	40	Air photos; no public access	50%	20
								High Viaduct - wo	uld have n	o significa	nt incremental	effect on fl	ow relative to	upstream
Zone 6	Axx road - Pxxxxx Bridge	28.3	39	10.7	10	1	Low	Masonry Arch bridge	10	10	100	Site visit	10%	90
Zone 6	Byway immediately downstream (original route)	,		Negl	ect as broad	lly at flood pla	in	masonry humpback	10	3	30	Site visit	80%	6
Zone 6	Ax motorway bridge. Gravel track under one side, access to houses	18.3	27.7	9.4	30		Medium	3 span bridge, two rows of 1x 1.5m columns plus bank seats for abutments	20	7	120	Site visit	20%	96
Zone 8	Axxx road at Rauros	6.0		Negl	ect as broad	lly at flood pla	in	masonry arch bridge	7	2	12	Site visit	80%	2
Zone 8	Railway 3 - bridge West (downstream) of Rauros	6.0	6.6	0.6		4	High	Horizontal steel bridge	7	0.5	3	Site visit	80%	1
Zone 9	Railway 3 - structures SW													0

14/06/2006 22:07

C:Documents and Settings\brownaj\Desktop\AJB documents\09 MOVE TO O DRIVE\Defra MOVE TO O DRIVE\Guide (post Defra)\Appendix E Rapid impact workbook Rev 04.07.XLS 1.7

	٨	D	<u> </u>			
	A	В	U U	D	E	F
1	DAMBREAK ANALYSIS					
2	Sheet 8.1: Summary of Assessment					_
3	Dam name	Cascade a	above Andu	iin (Beta So	outh to Delt	a South)
4	Grid ref.	0				ļ
5	Calculation Number/ description	Rapid dan	nbreak for c	lams in cas	cade on Ri	ver Anduin
6						
	Steps in Process	Key varia	bles (linked	to analysis	sheets, to	-
		allow che	cking that n	nain inputs	and output	-
7			seem rea	asonable)		
8	Sheet 8.2 : Dam Break Hydrograph for Subject Dam and any Dow	nstream D	Dams			
9	(rainy day when at dam crest, and sunny day when at spillway crest)		Sunny Day	Rainy Day	<u>Units</u>	_
10	Physical characteristics of subject reservoir	Heigh	t 25.8	27.7	m	_
11	Reserve	oir capacity	3,300,000	4,163,500	m ³	
12						
13	8.2.1 Estimated breach discharge hydrograph of subject reservoir		2861	3353	m ³ /s	
14						
	8.2.2 Estimated breach discharge hydrograph of cascade failure					
15	triggered by failure of subject dam					
16	Cascade failure including subject dam to downstr	eam Dam 1	897	1.361	m ³ /s	
17	Cascade failure including subject dam to downstr	eam Dam 2	2 1 183	1 836	m ³ /c	
1/			- 1,100	1,000	111 /5	
10	Sheet 8.3 : Data for Routing Downstream					
20	Used to provide data for attenuation analysis: including distance f	for which d	am broak fl	od is to be	routed	
20					Toulou	
21	Sheet 8.4 : Ranid method for estimating 100 year flood at each d	ownetroan	confluen	~		
22	If any lightly use there should find straight and different should be straight		fer est		4	
22	If applicable, use these sheets (inserting additional sheets where i	necessary)	for each af	rected dowr	nstream	
23	contiuence					
24		At dom	End of first	End of		
	Sheet 8.5 : Attenuation Downstream	ALUAII	reach	<u>enu ltimate</u>		
25			ICacin	reach	-	
26	Case 1 :	С	ascade failu	ure - rainy d	lay	
27	Peak discharge	2870	2,713	1,435	m ³ /s	
28	Time period at > half discharge	50	53	100	minutes	
29	Water depth	18.5	5.7	6.0	m	
30						
50	Case 2 ·	Sunny da	v · Bottom o	lam (Delta	south) only	1
31		Curriny du	y , Dottoin (ann (Bona s		
22	Peak discharge	650	616	329	m ³ /c	
22	Time period at a balf discharge	57	60	112	minutos	
24	I IIIIe periou at > Itali discritige	17 0	2 0U	<u>, ∠</u> 3,1	m	
25		11.2	J.Z	5.1		
36	Measures of force of water as Shoot 0 for	Caso 1				
27			7 ∩	<u>з</u> /	m/s	
31	Average velocity		1.0	20 5	2/-	
38			-+U.Z	20.J	10 /S	
39	Discharge/ width		21.7	14.4	m ⁻ /s	
40	Cumulative time to end of reach		4	53	mins	

	A	В	С	D	E	F	G
1	DAMBREAK ANALYSIS						
	Sheet 8 2E: Dambreak Hydrograph	for C	` aeca	de of Em	hankmor	t Dame	
	Sheet 0.2L. Danibleak hydrograph		asta		Dankinei		
2							
3	Dam name	Cascac	le above	e Anduin (Beta	a South to Del	ta South)	
4	Grid ref.	0					
5	Calculation Number/ description	Rapid	lambrea	ak for dams in	cascade on R	iver Anduin	
6		<u>Symbol</u>	<u>Units</u>				
7	8.2.1 Determine top dam breach hydrograph			<u> </u>			
8	Failure conditions	0		Sunny day	Rainy day		
9	Physical characteristics of subject reservoir (from	Sneet	1.1)	25.0	077		
10	Reight of peak reservoir level above base of dam	п V	111 3	20.0	27.7 4 163 500		
11		v	m	3,300,000	4,103,300		
12	Broach discharge as Freeblich 1005						
13	$B = 1.0$ $a a a 74 \mu 0.295 \mu 1.24$	\sim	³ /-	2004	2252		
14	Peak Qp=0.607(V) (V) (H) (H)	Qp	m ^r /s	2861	3353		
15	Time base as RMUKR, Section 5.2.2			2.000	2 2 2 2		
10	Time to peak discharge, TP=120(H)	<u>ip</u> To	Sec	3,090	3,329		
17	reservoir vol.)	re	sec	2,307	2,404		
	Where warning message in this row (i.e. $T_{0} < 2T_{0}$)			NEED TO	NEED TO		
18	correct by one of the following			REDUCE Tp	REDUCE Tp		
19	1. Keeping Op unchanged, reduce Tp (Te= 2Tp)	Tn	Sec	1 153	1 242		
20	where warning message, as Tp<40H			1,100	1,272		
21	2. Assuming Tp=40H reduce Qp until volume of	Тр	sec				
22	flood hydrograph equals reservoir volume	Qp	m ³ /s				
25							
24	Adopted dam break hydrograph	Qp	m³/s	2,861	3,353		
25	at subject dam	Тр	sec	1,153	1,242		
26		Te	sec	2,307	2,484		
27	IRemarks						
28							
28 29 30	8.2.2 Breach discharge of downstream reservoirs:	if failu	e triaa	ered by failur	e of subject of	lam	
28 29 30	8.2.2 Breach discharge of downstream reservoirs;	if failur	e trigge	ered by failur Downstrea	e of subject o	lam o (dimensions	taken from
28 29 30 31	8.2.2 Breach discharge of downstream reservoirs;	if failur	e trigge	ered by failur Downstrea	e of subject o m reservoir No Shee	lam o (dimensions t 1.5)	taken from
28 29 30 31 32	8.2.2 Breach discharge of downstream reservoirs;	if failur	e trigge	ered by failur Downstrea Dam	e of subject o m reservoir No Shee No 1	lam o (dimensions t 1.5) Dam	taken from No 2
28 29 30 31 32 33	8.2.2 Breach discharge of downstream reservoirs;	if failur	e trigge	ered by failur Downstrea Dam Gamm	e of subject o m reservoir No Shee No 1 na east	lam o (dimensions t 1.5) Dam Delta	taken from No 2 south
28 29 30 31 32 33 34	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam	if failur	re triggo <u>Units</u>	ered by failur Downstrea Dam Gamm Sunny day	e of subject o m reservoir No Shee No 1 na east Rainy day	lam o (dimensions t 1.5) Dam Delta Sunny day	taken from No 2 south Rainy day
28 29 30 31 32 33 34 35	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam	if failur <u>Symbol</u> H	re triggo <u>Units</u> m	ered by failur Downstrea Dam Gamm Sunny day 8.4	e of subject o m reservoir No Shee No 1 na east Rainy day 10.9	dam o (dimensions t 1.5) Dam Delta Sunny day 10.1	taken from No 2 south Rainy day 13.3
28 29 30 31 32 33 34 35 36	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir	if failur <u>Symbol</u> H V	re triggo <u>Units</u> m m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000	dam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000	taken from No 2 south Rainy day 13.3 1,860,800
28 29 30 31 32 33 34 35 36	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream	if failur Symbol H V V	<u>Units</u> m m ³ m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300
28 29 30 31 32 33 34 35 36 37	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s)	if failur Symbol H V V	<u>Units</u> m m ³ m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000	taken from No 2 south 13.3 1,860,800 11,874,300
28 29 30 31 32 33 34 35 36 37 38	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate	if failur Symbol H V V	re triggo <u>Units</u> m m ³ m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300
28 29 30 31 32 33 34 35 36 37 38 39	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995	if failur Symbol H V V	<u>Units</u> m m ³ m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000	e of subject o m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500	dam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300
28 29 30 31 32 33 34 35 36 37 38 39 40	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24}	if failur Symbol H V V V	<u>Units</u> m m ³ m ³ /s	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 897	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 1361	Jam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300
28 29 30 31 32 33 34 35 36 37 38 39 40 41	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2	if failur Symbol H V V Qp	re triggo Units m m ³ m ³	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 8,97	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 1361	Jam (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H)	if failur Symbol H V V Qp	re triggo <u>Units</u> m ³ m ³ /s sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 1361	Jam (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. =	Symbol H V V Qp Tp Te	re trigge <u>Units</u> m m ³ m ³ /s sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	Jam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.)	Symbol H V V Qp Tp Te	re trigge m m ³ m ³ /s sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	Jam (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V Qp Tp Te	re trigge m m ³ m ³ /s sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	Jam (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V Qp Tp Te	re triggo <u>Units</u> m m ³ m ³ m ³ /s sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V Qp Tp Te	re triggo <u>Units</u> m m ³ m ³ sec sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 ha east Rainy day 10.9 5,850,000 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 5 46	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	if failur Symbol H V V V Qp Tp Te Tp	re triggo <u>Units</u> m m ³ m ³ m ³ /s sec sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	if failur Symbol H V V V Qp Tp Te Tp Tp	re triggo <u>Units</u> m m ³ m ³ /s sec sec sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 5 6 46 47 48	 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V)^{0.295} (H)^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp) correct by one of the following 1. Keeping Qp unchanged, reduce Tp (Te= 2Tp), where warning message, as Tp<40H 2. Assuming Tp=40H reduce Qp until volume of flood hydrograph equals reservoir volume 	Symbol H V V Qp Tp Te Tp Tp Tp Qp	re triggo <u>Units</u> m m ³ m ³ /s sec sec sec sec <u>sec</u> <u>sec</u>	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 45 6 47 48 9 50	 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V)^{0.295} (H)^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp) correct by one of the following 1. Keeping Qp unchanged, reduce Tp (Te= 2Tp), where warning message, as Tp<40H 2. Assuming Tp=40H reduce Qp until volume of flood hydrograph equals reservoir volume 	Symbol H V V V Qp Tp Te Tp Tp Qp Qp	<u>Units</u> m m ³ m ³ /s sec sec sec sec m ³ /s	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207 1.183	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 44 50 50 51	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V V Qp Tp Te Tp Tp Qp Qp Tp	re triggo <u>Units</u> m m ³ m ³ /s <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u> <u>sec</u>	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 7,300,000 16,280 16,280 897 1,006	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207 1,183 1,216	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	8.2.2 Breach discharge of downstream reservoirs; 8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V V Qp Tp Te Tp Tp Qp Qp Tp Tp	e triggo m m ³ m ³ m ³ /s sec sec sec sec m ³ /s sec sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 7,300,000 7,300,000 16,280 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207 1,183 1,216 1,183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 45 50 51 52 53	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	Symbol H V V V Qp Tp Te Tp Tp Qp Qp Tp Tp Te	e triggo m m ³ m ³ m ³ /s sec sec sec sec m ³ /s sec sec sec sec sec	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 7,300,000 7,300,000 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207 1,183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	8.2.2 Breach discharge of downstream reservoirs; Failure conditions for downstream dam Height of peak reservoir level above base of dam Volume of downstream reservoir Total volume of subject dam and downstream reservoir(s) Initial estimate Breach discharge as Froehlich, 1995 Peak Qp=0.607(V) ^{0.295} (H) ^{1.24} Time base as RMUKR, Section 5.2.2 Time to peak discharge, Tp=120(H) Time to end of discharge (so hydrograph vol. = reservoir vol.) Where warning message in this row (i.e. Te < 2Tp)	if failur Symbol H V V V V Qp Tp Tp Tp Qp Qp Tp Tp Tp R Qp	re triggo <u>Units</u> m m ³ m ³ /s <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u>	ered by failur Downstrea Dam Gamm Sunny day 8.4 4,000,000 7,300,000 7,300,000 7,300,000 7,300,000 16,280 897 1,006 16,280	e of subject of m reservoir No Shee No 1 na east Rainy day 10.9 5,850,000 10,013,500 10,013,500 1361 1,306 14,718	lam o (dimensions t 1.5) Dam Delta Sunny day 10.1 1,100,000 8,400,000 1183 1,216 14,207 1,183 1,216 14,207	taken from No 2 south Rainy day 13.3 1,860,800 11,874,300 1836 1,596 12,938

Sheet 8.2E

C:\Documents and Settings\brownaj\Desktop\AJB documents\09 MOVE TO O DRIVE\Defra MOVE TO O DRIVE\Guide (post Defra)\Appendix E Rapid impact workbook Rev 04.07.XLS 8.2E (2) 14/06/2006 22:07

			A	1			В	С	D	E
4				212				1 -		
1						. fan Or	. la !a a t	•	nata Dan	_
2	Sneet 8	3.2C : D	ambrea	ак нуа	rograpi	n for Su	Dject	Conc	rete Dan]
3	Dam name						Cascade	e above	Anduin (Beta	South to Dell
4	Grid ref.	Number/	Jacorintian				U Donid d	ombrook	for domo in a	aaaada an D
0	Calculation	Number/ C	description				Rapid di	ampreak	for dams in c	ascade on R
7	8.2.1 Dete	rmine sub	ject dam b	reach hyd	drograph		Symbol	<u>Units</u>		
8	Failure co	nditions							Sunny day	Rainy day
9	Physical c	haracteris	tics of sub	ject reser	voir (from	Sheet 1.1)				
10	Reservoir v	vater level	at breach					mOD	169.52	171.5
11	Height of p	eak reserv	oir level abo	ove base c	of dam		H	m	25.8	27.7
12	Reservoir (Capacity					V	m³	3,300,000	4,163,500
13	At these re	eservoir le	vels input							050
14	Length of d	lam across	valley	I)			L	m	250	250
15	Breach are	a (below re	eservoir leve	el)			AB	m²	100	100
16	Total dam f	ace area (below resei	rvoir level)			A_{DF}	m²	2,500	2,500
17	Brooch form	notion time	o o lo ot fro	vm fallowin	~		т		720	
18	Dreachion	nation time	e - Select IIC		g		۱ _P	sec	720	
19	Arch; buttre	ess dams (as page 50	of RMUK	२)			sec	30	
20	Gravity dar	n (as page	50 of RMU	KR)				sec	720	
21	Breach dis	scharge as							44070	
22	Peak Qp=0	9.9 (A _B / A _D	_F) ^{0.28} L H ^{1.5}				Qp	m³/s	11973	13348
23	Time base	as RMUK	R, Section	5.2.2						
24	Time to pea	ak dischare	ge, Tp=120	(H)			Тр	sec	720	720
25	lime to end	d of discha	rge (so hyd	rograph vo	DI. = reserve	oir vol.)	le	sec	551 NEED TO	624
00	where war	ning mes	sage in this	s row (I.e.	1e < 21p)	correct			REDUCE Tp	REDUCE Tp
20	1 Kooping		ng agod roduc		2Tn)		Tn		276	212
28	where wa	arning mes	sade as Tr	20H	<u>zīp),</u>		тр	560	Reduce Qp	Reduce Qp
29	2. Assumin	a Tp=40H	reduce Op	until volum	ne of		Тр	sec	1.032	1.110
30	flood hyd	drograph e	quals reserv	voir volum	e		Qp	m ³ /s	3,198	3,752
31				-					<u> </u>	<u> </u>
32	Adopted	dam brea	k hydrogr	raph			Qp	m³/s	3,198	3,752
33	at subject	t dam					Тр	sec	1,032	1,110
34	Demontra						le	sec	2,064	2,219
35	Remarks									
36	-									
37										
39										
40				Concr	ete dam bro	each hydro	graphs			
41										
42	4000 -							Subject da	am only - sunny	day;
43	3500 -							Subject da	m only - rainy c	ay;
44										
40	3000 -				$/ \rightarrow$					
+1	1				$\langle \rangle$	\checkmark \checkmark				
30	<u>د</u> 2500 -									
51	E 2000									
52 53	<u> </u>									
54	<u>ت</u> 1500 -		\vdash					\searrow		
55										
57	1000 -		K				+	\prec		-
58								\sim		
59	500 -							\rightarrow	$\overline{\mathbf{X}}$	
60	0-									
62	Ĩ)	5 1	10	15	20	25	30	35	40
63	Ì				Time (minutee)	-			-
64	-				i ille (minutes				
00	r									

C:\Documents and Settings\brownaj\Desktop\AJB documents\09 MOVE TO O DRIVE\Defra MOVE TO O DRIVE\Guide (post Defra)\Appendix E Rapid impact workbook Rev 04.07.XLS 8.2C 14/06/2006 22:07

	٨	P	6	D	E	F	C	Ц	, , , , , , , , , , , , , , , , , , ,
	A	В	U	D	E	Г	G	п	
1	DAMBREAK	(ANALYSIS							
-	Sheet 0.2. D	oto for Dout	ing Down	otroom					
2	Sheet o.s. D	ata ior Rout		istream					
3	Dam name		Cascade abo	ve Anduin (Be	ta South to D	elta South)			
4	Grid ref.		0						
5	Calculation Number	r/ description	Ranid dambr	oak for dams i	n cascada on	 River Anduin			
6	Calculation Numbe			cak for dams i	in cascade on				
0			•• •						
7	8.3.1 Downstream	n confluence wher	e considerati	on of effect o	f dam break	is to be term	inated		
8			i					a	
9	Basis of assessme	ent						4	
10	OS sheet No/ scale	e/ date							
				2				1	
	Confluence with	Grid Ref of point	Distance	Q (m³/s)	of flood down:	stream of	Conclusion :		
	River name	just downstream	downstream	confluence	if no dam bre	ak :FEH or	terminate		
		of confluence	of subject	rapid	method (Shee	et 8.4)	impact		
12			dam	•	,	,	assessment?		
13			km	100 vear	1000 vear	Source			
14	Kanna - us of conf	luence	1	160	283	000.00	No	1	
14			<u> </u>	100	200	 	140		
15	nappa - ds of confi	luence	4	260	460		NO		
16	U/S of conflcune w	vith R Aries	25	300	600		No		
17	Ds of conf with R A	Aries	25	619	1092		Yes		
18			T			I	ľ		
19			1			1	1		
20		1	N	1		II	<u> </u>	ŀ	
ZT									
22	0 2 2 Vallay had a	lono downotroom	of dam						
23	o.o.z valley bed s	ope downstream			14/1-14				0
	Contour on map,	Chainage	Longitudinal	Valley base	Width at ne	ext contour	Implied side sl	ope H:V	Consider if slope
	at base of valley	downstream of	Slope	width (adjust					constant between
		subject dam		until side					each set of contours
24		(scaled)		slope					
25	mOD	km		reasonable)	5	10	5	10	
25	1100	KIII	ה	reasonable)	5	10	<u> </u>		3
26	119	0						ļ	
27	115	0.5	0.80%	50	170	270	12.0	11.0	
28	110	1.4	0.56%	10	80	150	7.0	7.0	
29	100	2.8	0.71%	5	40	100	3.5	4.8	
30	70	61	0.91%	40	150	540	11.0	25.0	
31	50	Q /	0.61%	50	120	1/0	7.0	15	1
22	25	10.7	0.0170	100	220	290	12.0	4.0	
32	30	12.2	0.54%	100	220	200	12.0	9.0	
33	25	15.6	0.29%	40	100	169	6.0	6.5	
34	15	18.8	0.31%	100	500	600	40.0	25.0	
35	10	22	0.16%	5		5	-0.5	0.0	
36	5	25	0.17%	5		5	-0.5	0.0	
37			-0.02%				0.0	0.0	
38			#DIV/0!					·	1
20			1				<u></u>	·	ā
39							i		
40									
41	600 -			1.00%					
42	•								
43									
44	500 🔶 🦯	• – – – – – – – – – – – – – – – – – – –	<u> </u>						
45	1 🖌	N							
46	1.7			-		t next contour 5	5		
40	400	▲		0.60%					
41	•	` ◆ ,				ase width (adiu	Ist		
48		· /			until eid	e slope reasons	able)		
49	300			- 0.40%					
50		`	t .			on map, at bas	seor		
51		• 7 ••	×		valley				
52	200	<u> </u>	×	-+ 0.20%	Longitue	dinal Slope			
52	. .	$/ \setminus /$	— • —						
55		$\sim $ $\sim $							
54	100	<u> </u>							
55		\checkmark \land \land	\backslash						
56	\.`` ≁	× ×	\mathbf{X}						
57	0 + * *		, * *	-0.20%					
58	0 5	10 15	20 25	30					
59									
60									

	A	В	С	D	E	F
1	DAMBREAK ANALYSIS					
	Sheet 8.4.1. Ranid Method for Est	imatina	100Vr E	bool		
		innating		loou		
2	at Each Downstream Confluence					
3	Dam name	Cascade abo	ve Anduin	(Beta Sou	th to Delta S	South)
4	Grid ref.	0				
5	Calculation Number/ description	Rapid dambr	eak for dan	ns in casc	ade on Rive	r Anduin
6	If applicable, use this sheet (inserting additional	sheets where	e necessa	ry) for		
7						
8		Symbol	<u>Units</u>	Input by	<u>Output/</u>	<u>Remarks</u>
9	For point at which inflow to be determined			<u>user</u>		
10	Description e.g. subject dam/ downstream confluenc	e	Just upstr	eam of cou	offucne with	Kanna Brook
11	Grid reference of point flow determined	-				
12	Grid reference of centre of relevant catchment					
13	Catchment Area	A	km ²	83.7		
1/			NITI		<u>.</u>	
	Estimate PMF using Rapid Method in Floods					
15	and Reservoir Safety					
	Identify mainstream entering reservoir and measure	l	km		1	
	length L (km) to end of stream (blue line on	-				
16	1:25,000 scale of OS Map, Ref. FSR)					
	Estimate altitude at points 10% and 85% of length	H ₁₀	mOD			
17	from lowest point on mainstream (H_{10} and H_{85})	10				
10		H₀₅	mOD			
10		с С	m/km		19.20	DDSBAD from E
19	Sible is then. S ₁₀₈₅ - Ti ₈₅ -Ti ₁₀ / 0.73 × L	U 1085			40.50	DF3BAR IIUIIIT
	Average Annual Rainfall on Catchment, SAAR	SAAR	mm	1046		
20	(mm); - obtained from FSR Vol. 5 maps	51/5				
	Peak of PMF Inflow Qm =0.454 A ^{0.937} S ₁₀₈₅ ^{0.328}	PMF	m³/s		942	
	SAAR ^{0.319,} in which it is assumed that the					
	catchment soils are impermeable and that there is					
21	no urban area in the catchment					
22						
23	Determine magnitude vs. annual probability		. .		~	
24	Factor to appropriate return period	Return period	<u>Annual</u>	Factor	<u>Q</u>	
25	Return period for PMF	PMF	1.0E-06	1	942	
26		10.000	1.0E-04	0.5	<u>4</u> 71	
27		1.000	1.0E-03	0.3	283	
28		150	6.7E-03	0.2	188	
29	Extrapolated on log-log paper from factors in FRS	100	1.0E-02	0.17	160	
30						
31	For completeness include average inflow as FRS					
32	Catchment Wetness Index	CWI			125	
	Adopt average non-separated flow, or base flow,	ANSF	m ³ /s/km ²		0.031	
1	ANSF from FSSR 16: ANSF=[33(CWI-125) + 3.0					
33	SAAR + 5.5] 10 ⁻⁵ (m ³ /s/km ²)					
34	Average inflow q =ANSFxA(m ³ /s)	q	m ³ /s		2.6	

	٨	D				F					
	Α	В	C	D	E	F					
1	DAMBREAK ANALYSIS										
	Sheet 8.4.2: Rapid Method for Est	imating	100Yr F	bool							
	of Fook Downotroom Confluence	j									
2	at Each Downstream Confluence										
3	Dam name	Cascade abc	ove Anduin	(Beta Sou	th to Delta S	South)					
4	Grid ref.	0									
5	Calculation Number/ description Rapid dambreak for dams in cascade on River Anduin										
	If applicable, use this sheet (inserting additional	sheets where	e necessa	ry) for							
6	each affected downstream confluence										
		Symbol	Linito	Input by	Output/	Domorko					
8		Symbol	Units	user	linked input	Remarks					
9	For point at which inflow to be determined				<u></u>						
10	Description e.g. subject dam/ downstream confluenc	e	Downstrea	am of conf	luence with	Kappa Brook					
11	Grid reference of point flow determined										
12	Grid reference of centre of relevant catchment										
13	Catchment Area	Α	km ²	149.9							
14					<u>4</u>	<u> </u>					
	Estimate PMF using Rapid Method in Floods										
15	and Reservoir Safety										
_	Identify mainstream entering reservoir and measure	L	km		1	[
	length L (km) to end of stream (blue line on										
16	1:25,000 scale of OS Map, Ref. FSR)										
	Estimate altitude at points 10% and 85% of length	H ₁₀	mOD								
17	from lowest point on mainstream (H_{10} and H_{85})										
10		Hos	mOD								
10	Slone is then: S – H -H / 0.75 v l	<u>د</u>	m/km		41 70	DPSBAR from F					
19		U 1085									
	Average Annual Rainfall on Catchment, SAAR	SAAR	mm	1029							
20	(mm); - obtained from FSR Vol. 5 maps	5145			1510						
	Peak of PMF Inflow Qm =0.454 A ^{0.937} S ₁₀₈₅ 0.328	PMF	m³/s		1542						
	SAAR ^{0.319,} in which it is assumed that the										
	catchment soils are impermeable and that there is										
21	no urban area in the catchment										
22											
23	Determine magnitude vs. annual probability			_							
24	Factor to appropriate return period	Return period	<u>Annual</u>	Factor	<u>Q</u>						
25	Return period for PMF	PMF	1.0E-06	1	1.542						
26		10.000	1.0E-04	0.5	771						
27		1,000	1.0E-03	0.3	463						
28		150	6.7E-03	0.2	308						
29	Extrapolated on log-log paper from factors in FRS	100	1.0E-02	0.17	262						
30											
31	For completeness include average inflow as FRS										
32	Catchment Wetness Index	CWI			125						
	Adopt average non-separated flow, or base flow,	ANSF	m ³ /s/km ²		0.031						
	ANSF from FSSR 16: ANSF=[33(CWI-125) + 3.0										
33	SAAR + 5.5] 10 ⁻⁵ (m ³ /s/km ²)										
34	Average inflow q =ANSFxA(m ³ /s)	q	m³/s		4.6						

	A	В	С	D	E	F
1	DAMBREAK ANALYSIS					
	Shoot 8 / 3: Panid Mothod for Est	imating	100Vr E	lood		
		innating		1000		
2	at Each Downstream Confluence				_	
3	Dam name	Cascade abo	ve Anduin	(Beta Sou	th to Delta S	South)
4	Grid ref.	0				
5	Calculation Number/ description	Rapid dambr	eak for dan	ns in casc	ade on Rive	r Anduin
	If applicable, use this sheet (inserting additional	sheets where	e necessai	ry) for		
6	each affected downstream confluence					
7						
		<u>Symbol</u>	<u>Units</u>	Input by	Output/	Remarks
8				user	linked input	
9	For point at which inflow to be determined				<u>()</u>	D: A :
10	Description e.g. subject dam/ downstream confluenc	е	Just upstre	eam of coi	nfluence wit	n River Aries
11	Grid reference of point flow determined					
12	Grid reference of centre of relevant catchment	^		070 5		1
13		A	km²	376.5	<u> </u>	
14						
	Estimate PMF using Rapid Method in Floods					
15	and Reservoir Safety				-	
	Identify mainstream entering reservoir and measure	L	km			
	length L (km) to end of stream (blue line on					
16	1:25,000 scale of OS Map, Ref. FSR)					
	Estimate altitude at points 10% and 85% of length	H_{10}	mOD			
17	from lowest point on mainstream (H_{10} and H_{85})					
18		H ₈₅	mOD			
10	Slope is then: S ₁₀₈₅ = H ₈₅ -H ₁₀ / 0.75 x L	S ₁₀₈₅	m/km		41.70	DPSBAR from F
10	Average Annual Rainfall on Catchment SAAR	SAAR	mm	1015	7	
20	(mm): - obtained from FSR Vol. 5 mans	OAAR		1015		
20	$\frac{1}{2}$	PMF			2639	
	Peak of PMF IIIIOW QIII = 0.454 A S_{1085}	i ivii	m/s		0000	
	SAAR ^{6,518} , in which it is assumed that the					
	catchment soils are impermeable and that there is					
21	no urban area in the catchment					
22	Determine memitude verservel weekskiller					
23	Determine magnitude vs. annual probability	Poturn poriod	Annual	Factor	0	
24	racior to appropriate return period	(vears)	probability	<u>raciui</u>	<u>u</u>	
25	Return period for PMF	PMF	1.0E-06	1	3,639	
26		10,000	1.0E-04	0.5	1,820	
27		1,000	1.0E-03	0.3	1,092	
28		150	6.7E-03	0.2	728	
29	Extrapolated on log-log paper from factors in FRS	100	1.0E-02	0.17	619	
30						
31	For completeness include average inflow as FRS					
32	Catchment Wetness Index	CWI			125	
	Adopt average non-separated flow, or base flow,	ANSF	m ³ /s/km ²		0.031	
	ANSF trom FSSR 16: ANSF=[33(CWI-125) + 3.0					
33	SAAR + 5.5] 10 ⁻⁵ (m ³ /s/km ²)					
34	Average inflow q =ANSFxA(m ³ /s)	q	m³/s		11.5	

	Α	В	С	D	E	F
1	DAMBREAK ANALYSIS					
	Sheet 8 / /: Ranid Method for Est	imating	100Vr E	bool		
		innating		1000		
2	at Each Downstream Confluence					
3	Dam name	Cascade abo	ve Anduin	(Beta Sou	th to Delta S	South)
4	Grid ref.	0				
5	Calculation Number/ description	Rapid dambr	eak for dan	ns in casc	ade on Rive	r Anduin
	If applicable, use this sheet (inserting additional	sheets wher	e necessai	ry) for		
6	each affected downstream confluence					
7		<u> </u>			o <i>i i i</i>	
8		Symbol	Units	Input by	<u>Output/</u> linked input	Remarks
9	For point at which inflow to be determined			<u>user</u>	<u>iniked input</u>	
10	Description e.g. subject dam/ downstream confluenc	e	Downstrea	am of conf	luence with	River Aries
11	Grid reference of point flow determined	•				
12	Grid reference of centre of relevant catchment					
13	Catchment Area	A	km ²	376.5		
14					<u> </u>	
17	Estimate PME using Ranid Method in Floods					
15	and Reservoir Safety					
10	Identify mainstream entering reservoir and measure	I	km		1	
	length L (km) to end of stream (blue line on	-				
16	1:25,000 scale of OS Map, Ref. FSR)					
	Estimate altitude at points 10% and 85% of length	H ₁₀	mOD			
17	from lowest point on mainstream (H_{10} and H_{85})	10	_			
10		Har	mOD			
18		· '85			44 70	
19	Slope is then: $S_{1085} = H_{85} - H_{10} / 0.75 \text{ X L}$	S ₁₀₈₅	m/km		41.70	DPSBAR from F
	Average Annual Rainfall on Catchment, SAAR	SAAR	mm	1015		
20	(mm); - obtained from FSR Vol. 5 maps					
	Peak of PMF Inflow Qm =0.454 A ^{0.937} S ₁₀₈₅ ^{0.328}	PMF	m³/s		3639	
	SAAR ^{0.319,} in which it is assumed that the					
	catchment soils are impermeable and that there is					
21	no urban area in the catchment					
22						
23	Determine magnitude vs. annual probability					
24	Factor to appropriate return period	Return period	Annual	Factor	<u>Q</u>	
24	Poture poriod for DME		probability	1	2 620	
20			1.0E-00	0.5	1 820	
20		1 000	1.0E-04	0.3	1,020	
28		150	6.7E-03	0,2	728	
29	Extrapolated on log-log paper from factors in FRS	100	1.0E-02	0.17	619	
30						
31	For completeness include average inflow as FRS	i				
32	Catchment Wetness Index	CWI			125	
	Adopt average non-separated flow, or base flow,	ANSF	m ³ /s/km ²		0.031	
	ANSF from FSSR 16: ANSF=[33(CWI-125) + 3.0					
33	SAAR + 5.5] 10 ⁻⁵ (m ³ /s/km ²)					
34	Average inflow q =ANSFxA(m ³ /s)	q	m³/s		11.5	

	A	В	С	D	E	F	G	Н		J	К	L
1	DAMBREAK ANALYSIS							·		<u>.</u>		
2	Sheet 8.5: Attenuation Down	stream										
3	Dam name	Cascade a	oove And	uin (Beta	South to Delta S	South)						
4	Grid ref.	0										
5	Calculation Number/ description	Rapid dam	break for	dams in d	ascade on River	Anduin						
6		<u>Symbol</u>	<u>Units</u>				Downstream	end of Reach N	lo			Remarks
7				0	1	2	3	5	6	7	8	
	OS Grid Ref											Reach 4 omitted as side
8												stream
9	Distance downstream of dam		km	0	2.6	4	7	14.5	16	22.5	25	
10	River bank level (base of cross section)		mOD	118	98	85	60	28	23	9	5	
	Feature defining end of reach			Dam	M way	railway	bend in river at	railway 2	A road	u/s Rauros;	confluence	
							end of pelagrir			spill to east	with tidal creek	
11												
	Topography of zone				steep sides		wide flood			flat	flat	
12				1			plain					
	Note any other special feature in zone that						skirt town of	Village of Chi			village of	
	would affect flow and/ or damage						Pelargir	straddles			Rauros on	
13								railway			west side	
14	Length of zone	X	m		2600	1400	3000	7500	1500	6500	9000	
15	Channel geometry of valley in each zo	ne		1								
	Average slope of base of valley that would	So	%		0.80%	0.80%	0.60%	0.40%	0.30%	0.20%	0.20%	
16	be inundated											
17	Manning's n	<u>n</u>			0.075	0.075	0.075	0.075	0.075	0.075	0.075	
18	Channel base width (trapezoid)	VV _B	m		10	10	40	50	40	100	100	
19	Channel side slopes H:V				10	10	10	10	5	80	80	
20	Infrastructure embankment across flow pa	ath (transfe	r from S	neet 1.7)								
21	Description				Mxx	Railway	A road	Railway 2	A road			
22	Distance downstream of dam		km		2.6	4	5	14.5	16			
23	Transportation embankment crest level		mOD		116	93.2	80	46.5	27.7			
24	River bank level (base of cross section)				98	85	75	28.1	18.3			
25	Length of crest which could be overtopped		m		200	125	150	150	150			
26	Average width of bridge opening (as slot)		m		20	5	9	10	20			
27	% DIOCKED				0%	50%	50%	50%	20%			
20	Logant of discharge		m		1.0	1.5	<u> </u>	19.5	1.0	0	5	<u>.</u>
29	Flow when unstream pended to top of omber	kmont	m2/c		10	0.2 90	ວ 75	10.0	4.1 245	-9 #NILINAL	-5 #NI IMI	
31			1113/5		2,231	00	15	591	240	#INUIVI!	#INUIVI!	
22	Estimated flow conditions											
32				1	Cascado failur	a - rainy day						
33	Dage I.			0		2 - rainy uay	<u> </u>	5	6	7	0	
34	Reach Number			U	1	۲ ۲۵۲	3	Э 1.40	0	1	ð	
	Flooded width (adjust estimate until	BI	m		125	125	145	140	100	410	370	
a -	ERROR below is acceptable, or see											
35	workbook comment)											
36	Attenuation factor k				0.25	0.25	0.25	0.25	0.25	0.25	0.25	
37	Attenuation length scale	La	m		46,253	51,178	30,213	16,838	23,245	9,113	33,586	
38	Discharge	Qp(x)	m³/s	2870	2,713	2,640	2,390	1,531	1,435	703	538	

C:\Documents and Settings\brownaj\Desktop\AJB documents\09 MOVE TO O DRIVE\Defra MOVE TO O DRIVE\Guide (post Defra)\Appendix E Rapid impact workbook Rev 04.07.XLS 8.5 14/06/2006 22:07

	А	В	С	D	E	F	G	Н	I	J	K	L
39	Time period at > half discharge	$T_h (=T_e/2)$	sec	3,000	3,173	3,261	3,602	5,623	5,998	12,240	16,002	
40	Max water depth (from Manning)	D	m	18.5	5.7	5.6	5.3	4.7	6.0	1.9	1.7	assume d< <width< td=""></width<>
	ERROR - initial estimate of width (B1) as				1%	2%	0%	-2%	0%	2%	-1%	
41	percentage of width implied by depth											
42	Flood level		mOD	136.49	103.70	90.61	65.27	32.65	28.97	10.89	6.71	
44	Check effect of Infrastructure embankmer	t										
45	Flow depth (intact) - above river bank		m		19.3	13.8	9.6	19.8	7.6	#NUM!	#NUM!	
46	Peak flood level		mOD		117.3	98.8	84.6	47.9	25.9	#NUM!	#NUM!	
47	Flooded width at this flow		m		395	285	232	446	116	#NUM!	#NUM!	
	Check if embankment is an obstruction				WARNING,	WARNING,	WARNING,	WARNING,	WARNING,	#NUM!	#NUM!	
48	Death avertagaing above top of emboulyment				OBSTRUCTION	OBSTRUCTION	OBSTRUCTION	OBSTRUCTION	OBSTRUCTION		#NU IN/I	
49	Proach width as Frachlich		m		1.3	5.0	4.0	1.3	2.9	#NUIVI!	#NUIVI! #NILIMI	
50	Breach width (average) - set to zero if not bre	ached	m		58	50.0	45.5	50.3	45.0	#NUM	#NUIMI	
52	Elow depth (breached) - above river bank	acheu	m		0.0	11.0	8.7	6.7	6.9	#NUIMI	#NUIMI	-
52	Depth overtopping above top of embankment		m		-8.1	2.8	3.7	-11.8	0.9	#NUM	#NUM	
54	Depth overtopping above top of embankmen				-0.1	2.0	5.7	-11.0	2.2	#NOM:	#NOW!	
55	Case 2 ·				Sunny day · Bo	ottom dam (Del	ta south) only					
55	Reach Number			0	1	2	3	5	6	7	8	
50	Elegeded width (adjust astimate as for	D1	m	U	75	75	05	100	70	270	250	-
57	Ploted width (adjust estimate as for	DI	111		15	75	90	100	70	270	250	
58	Attenuation length scale	دا	m		/8 891	53 802	31 133	16 964	23 374	9 270	33 259	
50	Discharge		m ³ /c	650	616	601	545	350	329	163	124	
59	Time period at > half discharge	$T_{\rm L} (=T_{\rm L}/2)$	Sec	3 400	3 586	3 680	4 053	6.306	6 724	13 556	17 768	
60	Max water depth (from Manning)			17.2	3.2	3 1	2.8	24	2 1	10,000	0.0	assume d< <width< td=""></width<>
61	EPPOP _ initial estimate of width (B1) as	U		17.2	<u> </u>	3%	-1%	2.4	-1%	3%	3%	
62	percentage of width implied by depth				2 /0	576	-170	576	-170	576	578	
64			mOD	125 20	101 10	00 12	62.90	20.25	26.05	10.01	5.00	
65	Check effect of Infrastructure embankmer	t	mod	155.20	101.16	00.15	02.00	30.35	20.05	10.01	5.90	
66	Flow depth (intact) - above river bank	•	m		7.5	10.2	6.6	12.9	5.2	#NUM!	#NUM!	
67	Flooded width at this flow		m		160	213	173	309	92	#NUM!	#NUM!	
0.	Check if embankment is an obstruction				WARNING,	WARNING,	WARNING,	WARNING,	WARNING,	#NUM!	#NUM!	
68					OBSTRUCTION	OBSTRUCTION	OBSTRUCTION	OBSTRUCTION	OBSTRUCTION			
69	Depth overtopping above top of embankment				-10.5	2.0	1.6	-5.6	0.5	#NUM!	#NUM!	
70	Breach width as Froenlich	achad	m		37.5	32.3	29.4	37.7	29.1	#NUM!	#NUM!	
/1	Breach width (average) - set to zero if not bre	ached	m			30	30	12.0	<u> </u>	#NU INAL	#511.15.41	
72	Flow depth (breached) - above river bank		m		1.5 50 5	0.C	5.3	12.9	5.2	#NUM!	#NUM!	
74	Depth overtopping above top of embankment		m		-50.5	-44.4	-40.2	-40.4	-39.7	#INUIVI!	#INUIVI!	
75												
76												
77												
10	<u></u>											

	А	В	С	D	E	F	G	Н		J	К	L	М
4	SITE					I							
1	SILE	INSFEC											
2	<u>Sheet</u>	<u>: 1.6: In</u>	stallatio	ns Downstream of Subject Reservoir								_	
3	Dam nar	ne			Cascade abov	ve Anduin	(Beta So	uth to Delta	a South)				
4	Grid ref.				0								
5	Calculati	on Number	description		Rapid dambre	eak for dar	ns in case	ade on Ri	ver Anduin				
7	Po	cic of occor	cmont										
/													
8	03 5	neel NO/ SC	ale/ uale										
9	. .	D ¹ <i>i</i>	(00.0.1)		r	D 11							
10	<u>Reacn</u> Number	Distance		Feature	D	Resider	ntial	0	<u>INON-</u>	esidentia	- property fic		Remarks - see checklist in text e.g.
44	Number		<u>rei.)</u>		<u>Ra</u>	any day		<u>Sunny</u>		Rainy da	<u>ly</u>	<u>Sunny</u>	flood installations on dam break
11		uam (km)			Longth rooid	frontogo		uay	Duilding	Num	Total area	<u>uay</u> Totol oroo	dete en threshold levels of individual
12					Tatal (m)	ITUTILage	Nieros	(aroo m2	floore	2	<u>TUlai alea</u>	data on theshold levels of individual
12					<u>10(a) (m)</u>	Unit longth	<u>inum</u> dwolling			10015	m ⁻ / person		properties
13	4	4.4		form huilding 150m d/a dam		lengin	uwening	silooded	1000	4	1000	1 000	
14	1	1.4		farm building 150m d/s dam					1600	1	1600	1,600	
10	1	<u></u>		racidential just before M way			2	2	100		100		
10	1	2.2		residential just before M way			2	2					
17	0	2.4		Dub and other buildings on minor read excessing			0	2	200		<u> </u>	<u> </u>	
10	2	2.4		Pub and other buildings on minor road crossing			0	3	300	2	600	600	
10	2			watercourse	60	6	10	4					
19	2			actate in Reach 2 flooded across read)	1400	0	175	4 50					
20	3			isolated houses	1400	0	175	2					
22	3			Motel		1	4	2	400	1	400	400	
23	3			large (60 x 150) building					9000	1	9000	9,000	
24	3			complex of buildings- only one on low ground affected					1800	1	1800	3,000	
	4			backed up to 85mOD from A road embankment - one			2	2	7800	2	15600	15,600	
25				large works			-	-		-		,	
26				six smaller industrial buildings					1200	1	1200	1.200	
27	5			scattered buildings in flood plain			7	5	200	1	200	200	
28	6			scattered buildings in flood plain			10	5					
29	6			works on right bank just before motorway					1600	1	1600	1,600	
30				Sub-total			216	73	24000		32100	30200	
31													
32	7			buildings at B road crossings, incl church			3	3	1200	1	1200	1,200	
33	8			2nd B road; incl 2 farms			12	12	1200	1	1200	1,200	sunny day = approx 1000 year Q
34				Mill					1600	1	1600	1,600	adjust occupancy
35				575m wide strip though Psi	5000	8	625	150			0	0	Eyeball estimate!!
36				one large building					2000	1	2000	2,000	
37				sewage works, school, church say 6 shops @200sqm					2400	1	2400	1,200	<u> </u>
38							856	238	32,400		40,500	37,400	

Sheet 9R

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N
1	CONSEQUENCE ASSESSMENT	•				•	•		•					
	Shoot 0: Estimate of Population at P	iek ar			see of Lif	fo								
2		13N ai				e								
3	Sheet 10: Estimate of direct cost of t	hird p	barty	flood	damage		Π							
4	Dam name	Cascad	le above	Anduin (Beta South to	Delta South)	1							
5	Grid ref.	0			<u> </u>		<u> </u>							
6	Calculation Number/ description	Rapid c	lambrea	k for dam	is in cascade	on River Andu	in _							
7		Symbol	Units	_	_	_	Down	stream end o	f Reach No	_	_	_		
8 9	9.1.1 Physical description and peak flow conditio (C/F from Sheet 8.5)	ons		0	1	2	3	4	5	6	7	8		
10	Distance downstream of dam		km	0	2.6	4	7		14.5	16	22.5	25		
	Feature defining end of reach			Dam	M way	railway	bend in river	side valley	railway 2	A road	u/s Rauros;	confluence		
							at end of				spill to east	with tidal		
11							pelagrir					creek		
	Note any other special feature in zone that would affect			0	0	0	skirt town of	backed up	Village of Chi	0	0	village of		
	flow and/ or damage						Pelargir	from A road-	straddles			Rauros on		
								inudnation	railway			west side		
12			ī					only						
13	State which case on Sheet 8.5 is to be used			Case 1	Cascade failu	ure - rainy day								
14	Discharge	Qp(x)	m³/s	2,870	2,713	2,640	2,390		1,531	1,435	703	538		
15	Flooded width	B1	m		125	125	145		140	100	410	370		
16	Max water depth (from Manning)	D	m	18.5	5.7	5.6	5.3		4.7	6.0	1.9	1.7		
17	Other measures of forcefulness of flow													
18	Average velocity	V	m/s	13.5	7.0	7.0	4.9		3.5	3.4	1.5	1.3		
19	Velocity x depth	VD	m²/s	249.1	40.2	39.1	25.8		16.1	20.5	2.8	2.3		
20	Discharge/ flooded width	Q/W	m²/s		21.7	21.1	16.5		10.9	14.4	1.7	1.5		
21	Time for peak dambreak flood to reach key points													
22	Time to travel reach		mins	-	4	3	8		30	7	44	63		
23	Cumulative time to end of reach		mins		4	8	16		46	53	97	109		
24	10.1.2 Number of properties vulnerable to Flood	Damag	e in Eac	ch Zone									I.	
25	Select one of the categories shown within input box (pick list)											
30	Residential Properties at Risk in Each Zone						No. of p	properties in e	ach damage ca	tegory:			Sub-total	Remarks
31	Property destroyed	1	No.		2	6	14		7	10			39	
32	Partial structural damage)	No.				175					12	187	
33	Inundation damage only	/	No.					2			3	625	630	
34	Non Residential Properties at Risk in Each Zone (build	d up in 1	Table 1.	6)		Total	area (m ²) of no	n-residential p	properties in eac	ch damage c	ategory		856	No.
35	Property destroyed	1	m²		1,700	600	2,200			1,600			6,100	
36	Partial structural damage		m ²				9,000		200				9,200	
37	Inundation damage only	/	m ²					16,800			1,200	7,200	25,200	
38				<u>I</u>									40,500	m2

Sheet 9R

	A	в С	D	E	F	G	Н	I	J	К	L	М	N
39	9.1.2 Population (pedestrians) at risk (water > 0.5	im) (PAR)											Remarks
40				When o	ccupied	Occupancy	Time average	ed PAR					
41	Residential: Number of PAR/ property			2.3		70%	1.61	/property					
42	Non- residential: PAR as area (m2)/ occupant				40	25%	160	m2/ occupant					
43												Sub-total	
44	Number of residential properties			2	6	189	2	7	10	3	637	856	
45	Residential properties: Max PAR (either accept equation, c	or overwrite)	Г	4.6	13.8	434.7	4.6	16.1	23.0	6.9	1,465.1	1,969	
46	Non residential : Max PAR (either accept equation, or ove	rwrite)	-	42.5	15.0	280.0	420.0	5.0	40.0	30.0	180.0	1012.5	
47	On transportation routes				6		2	6			10	24	
48	Other open air e.g. playing fields, recreational areas			1	1	2		2	1	1	10	18	
49	Assessed total PAR (time averaged)			15	20	376	110	21	27	13	1,091	1,673	
50													
51	9.2.3 Likely IOSS OF IIIe (LLOL)	0/			1009/	709/	209/	200/	E09/	10/	10/	7 6	
52	Fatality rate (Ratio LLOL to PAR) - see Guide Figure 9.1	%		100%	100%	70%	30%	30%	50%	1%	1%		
52				1/ 85	20.41	263.40	33.07	6.16	13 55	0.13	10.91	362.47	
54			V	Narning (hor	urs as below)	203.40	33.07	0.10	10.00	0.15	10.91	502.47	
55	Fatality rate (Ratio LLOL to PAR) - see Guide Figure 9.1	%	Ē	10.0%	10.0%	7.0%	4.0%	4.0%	5.0%	0.2%	0.2%	1 6	
56	LLOL			1.48	2.04	26.34	4.41	0.82	1.36	0.03	2.18	38.66	
58	Adopted likely loss of life	No warnir	na 🗖	262 47	Witt	n warning time		15	hours:	hours:	29.66		
29		No warm	19	302.47	· · · ·	r warning time		1.0		nours.	30.00	Ľ	
60	10.1.3 Estimated Cost of Damage											-	
61	a) Postcode (use for Internet searches of property value	ie)											
62	b) Per Residential Property per zone (average)						Cost of da	amage £k				-	
63	Property destroyed	£/property	у	222,260	222,260	222,260	222,260	222,260	222,260	222,260	222,260		
64	Partial structural damage	£/property	y 🔤	174,510	174,510	174,510	174,510	174,510	174,510	174,510	174,510		
65	Inundation damage only	£/property	y 🔤	34,622	34,622	34,622	34,622	34,622	34,622	34,622	34,622		
66	Total damage per zone	£		444,520	1,333,560	33,650,890	69,244	1,555,820	2,222,600	103,866	23,732,870	63,113,370	
67	c) Total per zone for non-residential property			Co	st of damage	£/m ² (spreadsl	neet multiples	by area, and g	ives total dan	nage in bottom	row)	,	
68	Property destroyed	£/m ²		1,629	1,629	1,629	1,629	1,629	1,629	1,629	1,629		
69	Partial structural damage	£/m ²		1,507	1,507	1,507	1,507	1,507	1,507	1,507	1,507		
70	Inundation damage only	£/m ²		695	695	695	695	695	695	695	695		
71	Total damage per zone	£		2,769,300	977,400	17,146,800	11,676,000	301,400	2,606,400	834,000	5,004,000	41,315,300	
72	d) Total by reach	£		3,213,820	2,310,960	50,797,690	11,745,244	1,857,220	4,829,000	937,866	28,736,870	104,428,670	
73	ļ						Sui	n of third par	ty property d	lamages (£k)	104,428,670		
74	ļ				Other dama	iges (Optiona	I at discretion	of user e.g. i	replacement	cost of dam)			
75							Va	alue carried fo	orward to See	ction 11 (£k)	104,428,670		
76													

Sheet 9S

	А	В	С	D	F	F	G	Н		J	К		М	N
1	CONSEQUENCE ASSESSMENT	0	U		-		Ŭ				I. I.			
2	Sheet 9: Estimate of Population at Risl	c and	Likel	ly Los	s of Life									
2	Sheet 10: Estimate of direct cost of thi	rd na	rtv fla	- h hoc	mage									
3	Dam name	Cascad			Bota South to	Dolta South)	7							
5	Grid ref	0		Anduni	Dela Souli lo	Della South)	-							
6	Calculation Number/ description	Rapid d	ambrea	k for dam	s in cascade o	on River Anduin	-							
7		Symbol	Units	adar			 Dow	nstream end o	of Reach No					
8	9 1 1 Physical description and peak flow conditions			0	1	2	3	4	5	6	7	8		
9	(C/F from Sheet 8 5)			v	•	-	°,	-	Ū	Ū	•			
10	Distance downstream of dam		km	0	2.6	4	7		14.5	16	22.5	25		
10	Feature defining end of reach			Dam	M way	railway	hend in river at	side vallev	railway 2	A road	u/s Rauros:	confluence		
				Dam	ivi way	raiway	end of pelagrir	Side valley	raiway 2	Alloud	spill to east	with tidal creek		
11							ond of polagin				opin to odot			
	Note any other special feature in zone that would affect flow			0	0	0	skirt town of	0	Village of Chi	0	0	village of		
	and/ or damage						Pelargir		straddles			Rauros on		
12							0		railway			west side		
13	State which case on Sheet 8.5 is to be used		[Case 2	Sunny day ; B	ottom dam (Del	ta south) only		= -					
14	Discharge	Qp(x)	m ³ /s	650	616	601	545		350	329	163	124		
15	Flooded width	B1	m		75	75	95		100	70	270	250		
16	Max water depth (from Manning)	D	m	17.2	3.2	3.1	2.8		2.4	3.1	1.0	0.9		
17	Other measures of forcefulness of flow													
18	Average velocity	V	m/s	13.0	4.6	4.5	2.9		2.0	2.0	0.9	0.8		
19	Velocity x depth	VD	m²/s	223.4	14.5	14.1	8.1		4.7	6.0	0.9	0.7		
20	Discharge/ flooded width	Q/W	m²/s		8.2	8.0	5.7		3.5	4.7	0.6	0.5		
21	Time for peak dambreak flood to reach key points													
22	Time to travel reach		mins		5	5	14		51	13	77	109		
23	Cumulative time to end of reach		mins		5	10	24		75	88	164	184		
24	10.1.2 Number of properties vulnerable to Flood Da	mage i	n Each	Zone										
25	Select one of the categories shown within input box (pic	k list)												
30	Residential Properties at Risk of Flood in Each Zone			L			No. of	properties in e	ach damage cate	egory:			Sub-total	Remarks
31	Property destroyed		No.										0	
32	Partial structural damage		No.		2	3			5	5			15	
33	Inundation damage only		No.				56	2			3	162	223	
34	Non Residential Properties at Risk of Flood in Each Zon	е				Т	otal area (m²) of n	on-residential	properties in eac	h damage cate	gory		238	No.
35	Property destroyed		m²				400						400	
36	Partial structural damage		m ²		1,600	600	9,000		200	1,600			13,000	
37	Inundation damage only		m²					16,800			1,200	6,000	24,000	
38													37,400	m ²
39	9.1.2 Population (pedestrians) at risk (water > 0.5m	n) (PAR)											Remarks
40		.,	,		When	occupied	Occupancy	Time averaged	I PAR					
41	Residential: Number of PAR/ property			I	23	_	70%	1 61	/property					
42	Non-residential: PAR as area (m2)/ occupant			l	2.0	40	25%	160	m2/occupant					
43							20/0	,00	(0000punt				Sub-total	
44	Number of residential properties			_	2	3	56	2	5	5	3	162	238	
45	Residential properties: Max PAR (either accept equation, or	overwrit	ie)		5	7	129	5	12	12	7	373	547	
46	Non residential : Max PAR (either accept equation, or overv	vrite)			40.0	15.0	235.0	420.0	5.0	40.0	30.0	150.0	935	
47	On transportation routes					3			3			10	16	
48	Other open air e.g. playing fields, recreational areas				1	1	2		2	1	1	10	18	
49	Assessed total PAR (time averaged)			L	14	13	151	108	14	19	13	318	651	

C:Documents and Settings\brownaj\Desktop\AJB documents\09 MOVE TO O DRIVE\Defra MOVE TO O DRIVE\Guide (post Defra)\Appendix E Rapid impact workbook Rev 04.07.XLS 9S 14/06/2006 22:07

Sheet 9S

	A	B C D	E	F	G	Н	I	J	К	L	М	Ν
50	0.2.2. Likely less of life (LLOL)		No worning								-	
51		0/	NO warning	00.00/	40.00/	4.00/	4.00/	4.00/	0.00/	0.00/	า เ	
52	Fatality rate (Ratio LLOL to PAR) - see Guide Figure 9.1	%	20.0%	20.0%	10.0%	4.0%	4.0%	4.0%	0.3%	0.3%		
53			2.84	2.52	15.09	4.33	0.57	0.76	0.04	0.95	27.11	
54	_		Warning (hou	rs as above)								
55	Fatality rate (Ratio LLOL to PAR) - see Guide Figure 9.1	%	3.0%	3.0%	2.0%	1.0%	1.0%	2.0%	0.2%	0.2%		
56	LLOL		0.56	0.58	5.59	1.13	0.26	0.61	0.04	1.38	10.16	
58	Adopted likely loss of life	No warning	27 11	W	ith warning time		1.5	hours.	hours:	10 16	T	
39		. to training	27.11		iai iraining anto			liouioi		10.10	.	
60	10.1.3 Estimated Cost of Damage										_	
61	a) Postcode (use for Internet searches of property value))]	
62	b) Per Residential Property per zone (average)					Cost of d	amage £k				=1	
63	Property destroyed	£/property	222,260	222,260	222,260	222,260	222,260	222,260	222,260	222,260		
64	Partial structural damage	£/property	174,510	174,510	174,510	174,510	174,510	174,510	174,510	174,510		
65	Inundation damage only	£/property	34,622	34,622	34,622	34,622	34,622	34,622	34,622	34,622		
66	Total damage per zone	£	349,020	523,530	1,938,832	69,244	872,550	872,550	103,866	5,608,764	10,338,356	
67	c) Total per zone for non-residential property			Cost of damag	ge £/m ² (spread	sheet multiples	by area, and giv	es total damage	e in bottom row)			
68	Property destroyed	£/m ²	1,629	1,629	1,629	1,629	1,629	1,629	1,629	1,629		
69	Partial structural damage	£/m ²	1,507	1,507	1,507	1,507	1,507	1,507	1,507	1,507		
70	Inundation damage only	£/m ²	695	695	695	695	695	695	695	695		
71	Total damage per zone	£	2,411,200	904,200	14,214,600	11,676,000	301,400	2,411,200	834,000	4,170,000	36,922,600	
72	d) Total by reach	£	2,760,220	1,427,730	16,153,432	11,745,244	1,173,950	3,283,750	937,866	9,778,764	47,260,956	
73							Sum of third	party property	damages (£k)	47,260,956		
74	1			Othe	er damages (O	otional at discr	etion of user e.	g. replacemen	t cost of dam		I	
75	1						Value carrie	d forward to Se	ection 11 (£k)	47.260.956	•	
76	1								()	,,		

	А	В	С	D	E
	CONSEQUENCE CLASS AND	FSTIMAT			
1	OFRISK				
2	Sheet 11.2: Consequence Clas	SS (Sheet 11	.1 not use	d)	
3	Dam name	Cascade abov	e Anduin (B	eta South to D	elta South)
4	Grid ref.	0			
5	Calculation Number/ description	Rapid dambre	ak for dams	in cascade on	River Anduin
6					
7	Consequence data (from Sheets 9, 10)			Rainy day	<u>Sunny day</u>
8	Population at Risk (PAR)		No. lives	1,673	651
9	Likely Loss of Life (LLOL)		No. lives	362.5	27.1
10	Cost of physical damage (£k)		£	104,428,670	47,260,956
12	Provious assessment of Conservance Clas				
12	Are there any dam break analysis estimates	of population	None		
	at risk likely loss of life if dam failed (if so giv	e details incl			
13	date)				
14	Dam (Flood) Category (and when/ who assigned	ed)	Α		
15	Dam (Earthquake) Category (and when/ who a	ssigned)			
16					
	Updated assessment of Consequence Clas	s; following th	nis assessm	ent (no	A1
17	warning)				
10					
20	Consequence	e diagram foi	r UK dams		
20	- · · · ·	U			
22		st life			
23		or me			
24	0.001 0.01 0.1 1	10	100	1000	
25					
26					5
27		A2		2	
28					2
29			- - - + + + - -		, , ,
30	В				5
31		└──┴─┴┴┴└└└╶╶╴└╶╵· ┢╶┨╶╵╌╵┵└┘└┥╴╴╴└╶╵·	- '-' -' -' - '-' -'		E C C C C C C C C C C C C C C C C C C C
32					
33					fai
34			+ + + + + + + + + + + + + + + + + + +	<u> </u>	
36			_ (_ ' 2 © 3 = 2 = ± = '= = - - - - - - - - -		5
37		F	- - - + + <mark> </mark> + - - 		5
38					5
		╘╶┫╌╵╌╵┵╘╵╫╴╴╴╘╶╵╴	_ '_ ' ' ' L' L' L _ [- '_ ' ' L' L' L' L _ L _ [- '_ ' ' ' ' L' L' L		
39				0.001 F	-
40					

			-	-		-		
	A	В	С	D	E	F	G	H I
1	REVIEW OF OUTPUT							
2	Sheet 12.1: Summary of Quant	itative	Risk A	Asse	essment			
3	Dam name	Cascade a	above Andu	in (Be	a South to Delta South)			
4	Grid ref.	0]				
5	Calculation Number/ description	Rapid da	mbreak fo	r dam	s in cascade on River Ar	nduin		
6			Increat d		l anvirong actablish basia	1		
7			inspect u	ann ann ch	aracteristics			
8				She		-		
9	Consequences of failure		aiv dav			╏━━━━━	Sunny d	av — — — —
_	Estimate dambreak flood, and flood hydrographs		ing any				~ •····j •	
10	with distance downstream					İ		
11	Section 8 (Sheet 8.2) - Dam break	2,870	m ³ /s at		dam site	650	m ³ /s at	dam site
12	Section 8 (Sheet 8.5) - Attenuation	538	m ³ /s at	25	km	124	m ³ /s at	25 km
13								
	Assess the overall impact of the dam break flood;							
	estimating the population at risk and the likely loss							
14	of life							
15	Section 9 (Sheet 9)	PAR =	1,673			PAR =	= 651	
16	No warning	LLOL =	362.5			LLOL :	= 27.1	
17								
18	Number of residential properties	856	0			23	8	
19	Area of non residential property	40,500	m ²			37,40	0 m²	
20	Assess the cost of physical damage	£104,4	28,670			£47,2	60,956	
	This may require consideration of several failure							
24	scenarios e.g. sunny day vs. rainy day, subject dam					l		
21	Section 10							
23								
24						Ī		
25	Assign Consequence Class	A1				A2		
26	Section 11 (Sheet 11.2)					1		
27	┝╾╾╾╾╾╾╾╾┶╼╾╾┶╼╼╼╼┙ │							

	Α	В	С	D
1	RE	VIEW OF OUTP	UT	
2	Sh	eet 12.2: User R	eview of Output from the Guide to QR	Α
	Dam	n name		Cascade above Anduin (Beta
3				South to Delta South)
4	Grid	l ref	0	
	Calc	culation Number/ descript	Rapid dambreak for dams in	
5				cascade on River Anduin
6	_			
7	Sect	tion	Remarks including Insights from using system	Results reasonable?
8			Consequence assessment	
	8	Dam break/	Analysis had to be adjusted to match detailed analysis, by	
		attenuation	1. Increase breach Q for cascade to highest in cascade	
			(not necessarily bottom dam); 2 Reduce k factor used to	
			calculate attenuation length, to get La of 20 to 80km (was	
			>1000km with default value from CIRIA Guide)	
9				
	9	Population at Risk	Underestimate relative to detailed analysis, because few	
		and Likely loss of	non-residential properties picked up from 25,000 map	
10		life		
11	10	Third party damage		
12			Summary	
	12	Is output from		
		assessment		
13		reasonable?		
		Is more detailed		
		assessment		
14		required (pick list)?		
		Actions arising from		
		risk assessment		
15				

ATTACHMENT D : RAPID METHOD WORKBOOK FOR RIVER ARIES

ATTACHMENT E : RAPID METHOD WORKBOOK FOR RIVER KAPPA

Both omitted for brevity